1,678,308 research outputs found
Fiber optic frequency transfer link
A reference frequency distribution system is disclosed for transmitting a reference frequency from a reference unit to a remote unit while keeping the reference frequency at the reference unit and the remote unit in phase. A fiber optic cable connects the reference unit to the remote unit. A frequency source at the reference unit produces a reference frequency having an adjustable phase. A fiber optic transmitter at the reference unit modulates a light beam with the reference frequency and transmits the light beam into the fiber optic cable. A 50/50 reflector at the remote unit reflects a first portion of the light beam from the reference unit back into the fiber optic cable to the reference unit. A first fiber optic receiver disposed at the remote unit receives a second portion of the light beam and demodulates the reference frequency to be used at the remote unit. A second fiber optic receiver disposed at the reference unit receives the first portion of the light beam and demodulates a reference frequency component. A phase conjugator is connected to the frequency source for comparing the phase of the reference frequency component to the phase of the reference frequency modulating the light beam being transmitted from the reference unit to maintain a conjugate (anti-symmetric) relationship between the reference frequency component and the reference frequency modulating the light beam where virtually no phase difference exists between the phase of the reference frequency component and the phase of the reference frequency modulating the light beam
Frequency Modulation of Spin-Transfer Oscillators
Spin-polarized dc electric current flowing into a magnetic layer can induce
precession of the magnetization at a frequency that depends on current. We show
that addition of an ac current to this dc bias current results in a frequency
modulated (FM) spectral output, generating sidebands spaced at the modulation
frequency. The sideband amplitudes and shift of the center frequency with drive
amplitude are in good agreement with a nonlinear FM model that takes into
account the nonlinear frequency-current relation generally induced by spin
transfer. Single-domain simulations show that ac current modulates the cone
angle of the magnetization precession, in turn modulating the frequency via the
demagnetizing field. These results are promising for communications and signal
processing applications of spin-transfer oscillators.Comment: 13 pages, 3 Figure
Computer method for identification of boiler transfer functions
Iterative computer aided procedure was developed which provides for identification of boiler transfer functions using frequency response data. Method uses frequency response data to obtain satisfactory transfer function for both high and low vapor exit quality data
Time-Frequency Transfer with Quantum Fields
Clock synchronisation relies on time-frequency transfer procedures which
involve quantum fields. We use the conformal symmetry of such fields to define
as quantum operators the time and frequency exchanged in transfer procedures
and to describe their transformation under transformations to inertial or
accelerated frames. We show that the classical laws of relativity are changed
when brought in the framework of quantum theory.Comment: 4 page
Role of anharmonic phonon scattering in the spectrally decomposed thermal conductance at planar interfaces
Detailed understanding of vibrational heat transfer mechanisms between solids
is essential for the efficient thermal engineering and control of
nanomaterials. We investigate the frequency dependence of anharmonic scattering
and interfacial thermal conduction between two acoustically mismatched solids
in planar contact by calculating the spectral decomposition of the heat current
flowing through an interface between two materials. The calculations are based
on analyzing the correlations of atomic vibrations using the data extracted
from non-equilibrium molecular dynamics simulations. Inelastic effects arising
from anharmonic interactions are shown to significantly facilitate heat
transfer between two mass-mismatched face-centered cubic lattices even at
frequencies exceeding the cut-off frequency of the heavier material due to (i)
enhanced dissipation of evanescent vibrational modes and (ii)
frequency-doubling and frequency-halving three-phonon energy transfer processes
at the interface. The results provide substantial insight into interfacial
energy transfer mechanisms especially at high temperatures, where inelastic
effects become important and other computational methods are ineffective.Comment: minor changes to v
Satellite time and frequency transfer (STIFT)
The concept of placing a hydrogen maser high stability clock in Earth orbit to provide accurate time and frequency comparisons worldwide to major timing centers and to a large number of radio observatory antenna sites involved in VLBI measurements was studied. The proposal was chiefly directed toward studies and initial hardware designs for time comparisons between hydrogen maser frequency standards and to modifications of the hydrogen maser for long-term use in space
Frequency Response of Uncertain Systems: Strong Kharitonov-Like Results
In this paper, we study the frequency response of uncertain systems using
Kharitonov stability theory on first order complex polynomial set. For an
interval transfer function, we show that the minimal real part of the frequency
response at any fixed frequency is attained at some prescribed vertex transfer
functions. By further geometric and algebraic analysis, we identify an index
for strict positive realness of interval transfer functions. Some extensions
and applications in positivity verification and robust absolute stability of
feedback control systems are also presented.Comment: 18 pages, 8 figure
Characterization of Optical Frequency Transfer Over 154 km of Aerial Fiber
We present measurements of the frequency transfer stability and analysis of
the noise characteristics of an optical signal propagating over aerial
suspended fiber links up to 153.6 km in length. The measured frequency transfer
stability over these links is on the order of 10^-11 at an integration time of
one second dropping to 10^-12 for integration times longer than 100 s. We show
that wind-loading of the cable spans is the dominant source of short-timescale
noise on the fiber links. We also report an attempt to stabilize the optical
frequency transfer over these aerial links.Comment: 4 pages, submitted to Optics Letter
- …
