1,678,308 research outputs found

    Fiber optic frequency transfer link

    Get PDF
    A reference frequency distribution system is disclosed for transmitting a reference frequency from a reference unit to a remote unit while keeping the reference frequency at the reference unit and the remote unit in phase. A fiber optic cable connects the reference unit to the remote unit. A frequency source at the reference unit produces a reference frequency having an adjustable phase. A fiber optic transmitter at the reference unit modulates a light beam with the reference frequency and transmits the light beam into the fiber optic cable. A 50/50 reflector at the remote unit reflects a first portion of the light beam from the reference unit back into the fiber optic cable to the reference unit. A first fiber optic receiver disposed at the remote unit receives a second portion of the light beam and demodulates the reference frequency to be used at the remote unit. A second fiber optic receiver disposed at the reference unit receives the first portion of the light beam and demodulates a reference frequency component. A phase conjugator is connected to the frequency source for comparing the phase of the reference frequency component to the phase of the reference frequency modulating the light beam being transmitted from the reference unit to maintain a conjugate (anti-symmetric) relationship between the reference frequency component and the reference frequency modulating the light beam where virtually no phase difference exists between the phase of the reference frequency component and the phase of the reference frequency modulating the light beam

    Frequency Modulation of Spin-Transfer Oscillators

    Full text link
    Spin-polarized dc electric current flowing into a magnetic layer can induce precession of the magnetization at a frequency that depends on current. We show that addition of an ac current to this dc bias current results in a frequency modulated (FM) spectral output, generating sidebands spaced at the modulation frequency. The sideband amplitudes and shift of the center frequency with drive amplitude are in good agreement with a nonlinear FM model that takes into account the nonlinear frequency-current relation generally induced by spin transfer. Single-domain simulations show that ac current modulates the cone angle of the magnetization precession, in turn modulating the frequency via the demagnetizing field. These results are promising for communications and signal processing applications of spin-transfer oscillators.Comment: 13 pages, 3 Figure

    Computer method for identification of boiler transfer functions

    Get PDF
    Iterative computer aided procedure was developed which provides for identification of boiler transfer functions using frequency response data. Method uses frequency response data to obtain satisfactory transfer function for both high and low vapor exit quality data

    Time-Frequency Transfer with Quantum Fields

    Full text link
    Clock synchronisation relies on time-frequency transfer procedures which involve quantum fields. We use the conformal symmetry of such fields to define as quantum operators the time and frequency exchanged in transfer procedures and to describe their transformation under transformations to inertial or accelerated frames. We show that the classical laws of relativity are changed when brought in the framework of quantum theory.Comment: 4 page

    Role of anharmonic phonon scattering in the spectrally decomposed thermal conductance at planar interfaces

    Full text link
    Detailed understanding of vibrational heat transfer mechanisms between solids is essential for the efficient thermal engineering and control of nanomaterials. We investigate the frequency dependence of anharmonic scattering and interfacial thermal conduction between two acoustically mismatched solids in planar contact by calculating the spectral decomposition of the heat current flowing through an interface between two materials. The calculations are based on analyzing the correlations of atomic vibrations using the data extracted from non-equilibrium molecular dynamics simulations. Inelastic effects arising from anharmonic interactions are shown to significantly facilitate heat transfer between two mass-mismatched face-centered cubic lattices even at frequencies exceeding the cut-off frequency of the heavier material due to (i) enhanced dissipation of evanescent vibrational modes and (ii) frequency-doubling and frequency-halving three-phonon energy transfer processes at the interface. The results provide substantial insight into interfacial energy transfer mechanisms especially at high temperatures, where inelastic effects become important and other computational methods are ineffective.Comment: minor changes to v

    Satellite time and frequency transfer (STIFT)

    Get PDF
    The concept of placing a hydrogen maser high stability clock in Earth orbit to provide accurate time and frequency comparisons worldwide to major timing centers and to a large number of radio observatory antenna sites involved in VLBI measurements was studied. The proposal was chiefly directed toward studies and initial hardware designs for time comparisons between hydrogen maser frequency standards and to modifications of the hydrogen maser for long-term use in space

    Frequency Response of Uncertain Systems: Strong Kharitonov-Like Results

    Full text link
    In this paper, we study the frequency response of uncertain systems using Kharitonov stability theory on first order complex polynomial set. For an interval transfer function, we show that the minimal real part of the frequency response at any fixed frequency is attained at some prescribed vertex transfer functions. By further geometric and algebraic analysis, we identify an index for strict positive realness of interval transfer functions. Some extensions and applications in positivity verification and robust absolute stability of feedback control systems are also presented.Comment: 18 pages, 8 figure

    Characterization of Optical Frequency Transfer Over 154 km of Aerial Fiber

    Get PDF
    We present measurements of the frequency transfer stability and analysis of the noise characteristics of an optical signal propagating over aerial suspended fiber links up to 153.6 km in length. The measured frequency transfer stability over these links is on the order of 10^-11 at an integration time of one second dropping to 10^-12 for integration times longer than 100 s. We show that wind-loading of the cable spans is the dominant source of short-timescale noise on the fiber links. We also report an attempt to stabilize the optical frequency transfer over these aerial links.Comment: 4 pages, submitted to Optics Letter
    corecore