22 research outputs found

    A Deep Residual Star Generative Adversarial Network for multi-domain Image Super-Resolution

    Full text link
    Recently, most of state-of-the-art single image super-resolution (SISR) methods have attained impressive performance by using deep convolutional neural networks (DCNNs). The existing SR methods have limited performance due to a fixed degradation settings, i.e. usually a bicubic downscaling of low-resolution (LR) image. However, in real-world settings, the LR degradation process is unknown which can be bicubic LR, bilinear LR, nearest-neighbor LR, or real LR. Therefore, most SR methods are ineffective and inefficient in handling more than one degradation settings within a single network. To handle the multiple degradation, i.e. refers to multi-domain image super-resolution, we propose a deep Super-Resolution Residual StarGAN (SR2*GAN), a novel and scalable approach that super-resolves the LR images for the multiple LR domains using only a single model. The proposed scheme is trained in a StarGAN like network topology with a single generator and discriminator networks. We demonstrate the effectiveness of our proposed approach in quantitative and qualitative experiments compared to other state-of-the-art methods.Comment: 5 pages, 6th International Conference on Smart and Sustainable Technologies 2021. arXiv admin note: text overlap with arXiv:2009.03693, arXiv:2005.0095

    Multi-Frequency-Aware Patch Adversarial Learning for Neural Point Cloud Rendering

    Full text link
    We present a neural point cloud rendering pipeline through a novel multi-frequency-aware patch adversarial learning framework. The proposed approach aims to improve the rendering realness by minimizing the spectrum discrepancy between real and synthesized images, especially on the high-frequency localized sharpness information which causes image blur visually. Specifically, a patch multi-discriminator scheme is proposed for the adversarial learning, which combines both spectral domain (Fourier Transform and Discrete Wavelet Transform) discriminators as well as the spatial (RGB) domain discriminator to force the generator to capture global and local spectral distributions of the real images. The proposed multi-discriminator scheme not only helps to improve rendering realness, but also enhance the convergence speed and stability of adversarial learning. Moreover, we introduce a noise-resistant voxelisation approach by utilizing both the appearance distance and spatial distance to exclude the spatial outlier points caused by depth noise. Our entire architecture is fully differentiable and can be learned in an end-to-end fashion. Extensive experiments show that our method produces state-of-the-art results for neural point cloud rendering by a significant margin. Our source code will be made public at a later date.Comment: 8 pages, 4 figure

    Guided Frequency Loss for Image Restoration

    Full text link
    Image Restoration has seen remarkable progress in recent years. Many generative models have been adapted to tackle the known restoration cases of images. However, the interest in benefiting from the frequency domain is not well explored despite its major factor in these particular cases of image synthesis. In this study, we propose the Guided Frequency Loss (GFL), which helps the model to learn in a balanced way the image's frequency content alongside the spatial content. It aggregates three major components that work in parallel to enhance learning efficiency; a Charbonnier component, a Laplacian Pyramid component, and a Gradual Frequency component. We tested GFL on the Super Resolution and the Denoising tasks. We used three different datasets and three different architectures for each of them. We found that the GFL loss improved the PSNR metric in most implemented experiments. Also, it improved the training of the Super Resolution models in both SwinIR and SRGAN. In addition, the utility of the GFL loss increased better on constrained data due to the less stochasticity in the high frequencies' components among samples
    corecore