618,078 research outputs found

    Real-time Correlators and Hidden Conformal Symmetry in Kerr/CFT Correspondence

    Full text link
    In this paper, we study the real-time correlators in Kerr/CFT, in the low frequency limit of generic non-extremal Kerr(-Newman) black holes. From the low frequency scattering of Kerr-Newman black holes, we show that for the uncharged scalar scattering, there exists hidden conformal symmetry on the solution space. Similar to Kerr case, this suggests that the Kerr-Newman black hole is dual to a two-dimensional CFT with central charges cL=cR=12Jc_L=c_R=12J and temperatures TL=(r++r)Q2/M4πa,TR=r+r4πaT_L=\frac{(r_++r_-)-Q^2/M}{4\pi a}, T_R=\frac{r_+-r_-}{4\pi a}. Using the Minkowski prescription, we compute the real-time correlators of charged scalar and find perfect match with CFT prediction. We further discuss the low-frequency scattering of photons and gravitons by Kerr black hole and find that their retarded Green's functions are in good agreement with CFT prediction. Our study supports the idea that the hidden conformal symmetry in the solution space is essential to Kerr/CFT correspondence.Comment: 15 pages, Latex; typos corrected, references updated; minor correction, published versio

    A Contact Energy Function Considering Residue Hydrophobic Environment and Its Application in Protein Fold Recognition

    Get PDF
    The three-dimensional (3D) structure prediction of proteins is an important task in bioinformatics. Finding energy functions that can better represent residue-residue and residue-solvent interactions is a crucial way to improve the prediction accuracy. The widely used contact energy functions mostly only consider the contact frequency between different types of residues; however, we find that the contact frequency also relates to the residue hydrophobic environment. Accordingly, we present an improved contact energy function to integrate the two factors, which can reflect the influence of hydrophobic interaction on the stabilization of protein 3D structure more effectively. Furthermore, a fold recognition (threading) approach based on this energy function is developed. The testing results obtained with 20 randomly selected proteins demonstrate that, compared with common contact energy functions, the proposed energy function can improve the accuracy of the fold template prediction from 20% to 50%, and can also improve the accuracy of the sequence-template alignment from 35% to 65%

    Coding overcomplete representations of audio using the MCLT

    Get PDF
    We propose a system for audio coding using the modulated complex lapped transform (MCLT). In general, it is difficult to encode signals using overcomplete representations without avoiding a penalty in rate-distortion performance. We show that the penalty can be significantly reduced for MCLT-based representations, without the need for iterative methods of sparsity reduction. We achieve that via a magnitude-phase polar quantization and the use of magnitude and phase prediction. Compared to systems based on quantization of orthogonal representations such as the modulated lapped transform (MLT), the new system allows for reduced warbling artifacts and more precise computation of frequency-domain auditory masking functions

    Lagrangian single particle turbulent statistics through the Hilbert-Huang Transform

    Get PDF
    The Hilbert-Huang transform is applied to analyze single particle Lagrangian velocity data from numerical simulations of hydrodynamic turbulence. The velocity trajectory is described in terms of a set of intrinsic mode functions, C_{i}(t), and of their instantaneous frequency, \omega_{i}(t). On the basis of this decomposition we define the \omega-conditioned statistical moments of the C_{i} modes, named q-order Hilbert Spectra (HS). We show that such new quantities have enhanced scaling properties as compared to traditional Fourier transform- or correlation-based (Structure Functions) statistical indicators, thus providing better insights into the turbulent energy transfer process. We present a clear empirical evidence that the energy-like quantity, i.e. the second-order HS, displays a linear scaling in time in the inertial range, as expected from dimensional analysis and never observed before. We also measure high order moment scaling exponents in a direct way, without resorting the Extended Self Similarity (ESS) procedure. This leads to a new estimate of the Lagrangian structure functions exponents which are consistent with the multifractal prediction in the Lagrangian frame as proposed in [Biferale et al., Phys. Rev. Lett. vol. 93, 064502 (2004)].Comment: 5 pages, 5 figure
    corecore