398,997 research outputs found
Frequency locking of modulated waves
We consider the behavior of a modulated wave solution to an
-equivariant autonomous system of differential equations under an
external forcing of modulated wave type. The modulation frequency of the
forcing is assumed to be close to the modulation frequency of the modulated
wave solution, while the wave frequency of the forcing is supposed to be far
from that of the modulated wave solution. We describe the domain in the
three-dimensional control parameter space (of frequencies and amplitude of the
forcing) where stable locking of the modulation frequencies of the forcing and
the modulated wave solution occurs.
Our system is a simplest case scenario for the behavior of self-pulsating
lasers under the influence of external periodically modulated optical signals
Versatile LDV burst simulator
A device for generating burst signals is reported that can be used to determine whether or not a laser Doppler velocimeter is operating properly. A high frequency signal which corresponds to the information frequency of the laser Doppler velocimeter is modulated by a low frequency signal to provide an envelope for the high frequency signal. The high frequency signal is modulated by any modulator means such as, for example, an analog multiplier. The low frequency signal is added to the modulated signal to provide pedestals for the resulting series of burst pulses. The means are provided for selecting different combinations of these burst signals. Also means are provided for making the burst signals asymmetrical as desired. In addition, means are provided for varying the frequencies, and amplitudes of the information, envelope and pedestal frequency signals in the burst signals
A 225 MHz FM oscillator with response to 10 MHz
Frequency-modulated transistor oscillator is used in wideband television transmitters. It provides near-sinusoidal output waveforms and has good frequency stability
Method and apparatus for measuring minority carrier lifetime in a direct band-gap semiconductor
A direct band-gap semiconductor is exposed to intensity-modulated photon radiation having a characteristic energy at least as great as the energy gap of the semiconductor. This produces a time dependent concentration of excess charge carriers through the material, producing a luminescence signal modulated at the same frequency as the incident radiation but shifted in phase by an amount related to the lifetime of minority carriers. In a preferred embodiment, the phase shift of the luminescence signal is determined by transforming it to a modulated electrical signal and mixing the electrical signal with a reference signal modulated at the same frequency and having a phase which is known relative to the incident radiation. Minority carrier lifetime is calculated by integrating a direct current component of the mixed signal (F sub dc) over a 2 pi range in phase of the reference signal
Frequency-modulated continuous-wave LiDAR compressive depth-mapping
We present an inexpensive architecture for converting a frequency-modulated
continuous-wave LiDAR system into a compressive-sensing based depth-mapping
camera. Instead of raster scanning to obtain depth-maps, compressive sensing is
used to significantly reduce the number of measurements. Ideally, our approach
requires two difference detectors. % but can operate with only one at the cost
of doubling the number of measurments. Due to the large flux entering the
detectors, the signal amplification from heterodyne detection, and the effects
of background subtraction from compressive sensing, the system can obtain
higher signal-to-noise ratios over detector-array based schemes while scanning
a scene faster than is possible through raster-scanning. %Moreover, we show how
a single total-variation minimization and two fast least-squares minimizations,
instead of a single complex nonlinear minimization, can efficiently recover
high-resolution depth-maps with minimal computational overhead. Moreover, by
efficiently storing only data points from measurements of an
pixel scene, we can easily extract depths by solving only two linear equations
with efficient convex-optimization methods
Linear phase demodulator including a phase locked loop with auxiliary feedback loop
A phase modulated wave that may have no carrier power is demodulated by a phase locked loop including a phase detector for deriving an A.C. data output signal having a magnitude and a phase indicative of the phase of the modulated wave. A feedback loop responsive to the data output signal restores power to the carrier frequency component to the loop. In one embodiment, the feedback loop includes a phase modulator responsive to the phase modulated wave and the data output signal. In a second embodiment, carrier frequency power is restored by differentiating the data output signal and supplying the differentiated signal to an input of a voltage controlled oscillator included in the phase locked loop
A numerical study of an inline oscillating cylinder in a free stream
Simulations of a cylinder undergoing externally controlled sinusoidal oscillations in the free stream direction have been performed. The frequency of oscillation was kept equal to the vortex shedding frequency from a fixed cylinder, while the amplitude of oscillation was varied, and the response of the flow measured. With varying amplitude, a rich series of dynamic responses was recorded. With increasing amplitude, these states included wakes similar to the Kármán vortex street, quasiperiodic oscillations interleaved with regions of synchronized periodicity (periodic on multiple oscillation cycles), a period-doubled state and chaotic oscillations. It is hypothesized that, for low to moderate amplitudes, the wake dynamics are controlled by vortex shedding at a global frequency, modified by the oscillation. This vortex shedding is frequency modulated by the driven oscillation and amplitude modulated by vortex interaction. Data are presented to support this hypothesis
- …
