4,869 research outputs found
On the differential geometry of curves in Minkowski space
We discuss some aspects of the differential geometry of curves in Minkowski
space. We establish the Serret-Frenet equations in Minkowski space and use them
to give a very simple proof of the fundamental theorem of curves in Minkowski
space. We also state and prove two other theorems which represent Minkowskian
versions of a very known theorem of the differential geometry of curves in
tridimensional Euclidean space. We discuss the general solution for torsionless
paths in Minkowki space. We then apply the four-dimensional Serret-Frenet
equations to describe the motion of a charged test particle in a constant and
uniform electromagnetic field and show how the curvature and the torsions of
the four-dimensional path of the particle contain information on the
electromagnetic field acting on the particle.Comment: 10 pages. Typeset using REVTE
Classical A_n--W-Geometry
This is a detailed development for the case, of our previous article
entitled "W-Geometries" to be published in Phys. Lett. It is shown that the
--W-geometry corresponds to chiral surfaces in . This is comes out
by discussing 1) the extrinsic geometries of chiral surfaces (Frenet-Serret and
Gauss-Codazzi equations) 2) the KP coordinates (W-parametrizations) of the
target-manifold, and their fermionic (tau-function) description, 3) the
intrinsic geometries of the associated chiral surfaces in the Grassmannians,
and the associated higher instanton- numbers of W-surfaces. For regular points,
the Frenet-Serret equations for --W-surfaces are shown to give the
geometrical meaning of the -Toda Lax pair, and of the conformally-reduced
WZNW models, and Drinfeld-Sokolov equations. KP coordinates are used to show
that W-transformations may be extended as particular diffeomorphisms of the
target-space. This leads to higher-dimensional generalizations of the WZNW and
DS equations. These are related with the Zakharov- Shabat equations. For
singular points, global Pl\"ucker formulae are derived by combining the
-Toda equations with the Gauss-Bonnet theorem written for each of the
associated surfaces.Comment: (60 pages
The Frenet Serret Description of Gyroscopic Precession
The phenomenon of gyroscopic precession is studied within the framework of
Frenet-Serret formalism adapted to quasi-Killing trajectories. Its relation to
the congruence vorticity is highlighted with particular reference to the
irrotational congruence admitted by the stationary, axisymmetric spacetime.
General precession formulae are obtained for circular orbits with arbitrary
constant angular speeds. By successive reduction, different types of
precessions are derived for the Kerr - Schwarzschild - Minkowski spacetime
family. The phenomenon is studied in the case of other interesting spacetimes,
such as the De Sitter and G\"{o}del universes as well as the general
stationary, cylindrical, vacuum spacetimes.Comment: 37 pages, Paper in Late
Hamiltonian Frenet-Serret dynamics
The Hamiltonian formulation of the dynamics of a relativistic particle
described by a higher-derivative action that depends both on the first and the
second Frenet-Serret curvatures is considered from a geometrical perspective.
We demonstrate how reparametrization covariant dynamical variables and their
projections onto the Frenet-Serret frame can be exploited to provide not only a
significant simplification of but also novel insights into the canonical
analysis. The constraint algebra and the Hamiltonian equations of motion are
written down and a geometrical interpretation is provided for the canonical
variables.Comment: Latex file, 14 pages, no figures. Revised version to appear in Class.
Quant. Gra
- …
