2,574 research outputs found

    A finite-element toolbox for the stationary Gross-Pitaevskii equation with rotation

    Full text link
    We present a new numerical system using classical finite elements with mesh adaptivity for computing stationary solutions of the Gross-Pitaevskii equation. The programs are written as a toolbox for FreeFem++ (www.freefem.org), a free finite-element software available for all existing operating systems. This offers the advantage to hide all technical issues related to the implementation of the finite element method, allowing to easily implement various numerical algorithms.Two robust and optimised numerical methods were implemented to minimize the Gross-Pitaevskii energy: a steepest descent method based on Sobolev gradients and a minimization algorithm based on the state-of-the-art optimization library Ipopt. For both methods, mesh adaptivity strategies are implemented to reduce the computational time and increase the local spatial accuracy when vortices are present. Different run cases are made available for 2D and 3D configurations of Bose-Einstein condensates in rotation. An optional graphical user interface is also provided, allowing to easily run predefined cases or with user-defined parameter files. We also provide several post-processing tools (like the identification of quantized vortices) that could help in extracting physical features from the simulations. The toolbox is extremely versatile and can be easily adapted to deal with different physical models

    A finite element method with mesh adaptivity for computing vortex states in fast-rotating Bose-Einstein condensates

    Get PDF
    Numerical computations of stationary states of fast-rotating Bose-Einstein condensates require high spatial resolution due to the presence of a large number of quantized vortices. In this paper we propose a low-order finite element method with mesh adaptivity by metric control, as an alternative approach to the commonly used high order (finite difference or spectral) approximation methods. The mesh adaptivity is used with two different numerical algorithms to compute stationary vortex states: an imaginary time propagation method and a Sobolev gradient descent method. We first address the basic issue of the choice of the variable used to compute new metrics for the mesh adaptivity and show that simultaneously refinement using the real and imaginary part of the solution is successful. Mesh refinement using only the modulus of the solution as adaptivity variable fails for complicated test cases. Then we suggest an optimized algorithm for adapting the mesh during the evolution of the solution towards the equilibrium state. Considerable computational time saving is obtained compared to uniform mesh computations. The new method is applied to compute difficult cases relevant for physical experiments (large nonlinear interaction constant and high rotation rates).Comment: to appear in J. Computational Physic

    Exploring the Interplay between CAD and FreeFem++ as an Energy Decision-Making Tool for Architectural Design

    Get PDF
    The energy modelling software tools commonly used for architectural purposes do not allow a straightforward real-time implementation within the architectural design programs. In addition, the surrounding exterior spaces of the building, including the inner courtyards, hardly present a specific treatment distinguishing these spaces from the general external temperature in the thermal simulations. This is a clear disadvantage when it comes to streamlining the design process in relation to the whole-building energy optimization. In this context, the present study aims to demonstrate the advantages of the FreeFem++ open source program for performing simulations in architectural environments. These simulations include microclimate tests that describe the interactions between a building architecture and its local exterior. The great potential of this mathematical tool can be realized through its complete system integration within CAD (Computer-Aided Design) software such as SketchUp or AutoCAD. In order to establish the suitability of FreeFem++ for the performance of simulations, the most widely employed energy simulation tools able to consider a proposed architectural geometry in a specific environment are compared. On the basis of this analysis, it can be concluded that FreeFem++ is the only program displaying the best features for the thermal performance simulation of these specific outdoor spaces, excluding the currently unavailable easy interaction with architectural drawing programs. The main contribution of this research is, in fact, the enhancement of FreeFem++ usability by proposing a simple intuitive method for the creation of building geometries and their respective meshing (pre-processing). FreeFem++ is also considered a tool for data analysis (post-processing) able to help engineers and architects with building energy-efficiency-related tasks

    Optimal wavy surface to suppress vortex shedding using second-order sensitivity to shape changes

    Full text link
    A method to find optimal 2nd-order perturbations is presented, and applied to find the optimal spanwise-wavy surface for suppression of cylinder wake instability. Second-order perturbations are required to capture the stabilizing effect of spanwise waviness, which is ignored by standard adjoint-based sensitivity analyses. Here, previous methods are extended so that (i) 2nd-order sensitivity is formulated for base flow changes satisfying linearised Navier-Stokes, and (ii) the resulting method is applicable to a 2D global instability problem. This makes it possible to formulate 2nd-order sensitivity to shape modifications. Using this formulation, we find the optimal shape to suppress the a cylinder wake instability. The optimal shape is then perturbed by random distributions in full 3D stability analysis to confirm that it is a local optimal at the given amplitude and wavelength. Furthermore, it is shown that none of the 10 random wavy shapes alone stabilize the wake flow at Re=50, while the optimal shape does. At Re=100, surface waviness of maximum height 1% of the cylinder diameter is sufficient to stabilize the flow. The optimal surface creates streaks by passively extracting energy from the base flow derivatives and effectively altering the tangential velocity component at the wall, as opposed to spanwise-wavy suction which inputs energy to the normal velocity component at the wall. This paper presents a fully two-dimensional and computationally affordable method to find optimal 2nd-order perturbations of generic flow instability problems and any boundary control (such as boundary forcing, shape modulation or suction).Comment: 19 pages, 6 figure

    Parallel preconditioners for high order discretizations arising from full system modeling for brain microwave imaging

    Get PDF
    This paper combines the use of high order finite element methods with parallel preconditioners of domain decomposition type for solving electromagnetic problems arising from brain microwave imaging. The numerical algorithms involved in such complex imaging systems are computationally expensive since they require solving the direct problem of Maxwell's equations several times. Moreover, wave propagation problems in the high frequency regime are challenging because a sufficiently high number of unknowns is required to accurately represent the solution. In order to use these algorithms in practice for brain stroke diagnosis, running time should be reasonable. The method presented in this paper, coupling high order finite elements and parallel preconditioners, makes it possible to reduce the overall computational cost and simulation time while maintaining accuracy
    corecore