4 research outputs found

    Automatic salient object segmentation based on context and shape prior

    Full text link

    Free-Shape Polygonal Object Localization

    Get PDF
    Polygonal objects are prevalent in man-made scenes. Early approaches to detecting them relied mainly on geometry while subsequent ones also incorporated appearance-based cues. It has recently been shown that this could be done fast by searching for cycles in graphs of line-fragments, provided that the cycle scoring function can be expressed as additive terms attached to individual fragments. In this paper, we propose an approach that eliminates this restriction. Given a weighted line-fragment graph, we use its cyclomatic number to partition the graph into managebly-sized sub-graphs that preserve nodes and edges with a high weight and are most likely to contain object contours. Object contours are then detected as maximally scoring elementary circuits enumerated in each sub-graph. Our approach can be used with any cycle scoring function and multiple candidates that share line fragments can be found. This is unlike in other approaches that rely on a greedy approach to finding candidates. We demonstrate that our approach significantly outperforms the state-of-the-art for the detection of building rooftops in aerial images and polygonal object categories from ImageNet

    Superedge grouping for object localization by combining appearance and shape information

    Full text link

    Free-Shape Subwindow Search for Object Localization

    No full text
    Object localization in an image is usually handled by searching for an optimal subwindow that tightly covers the object of interest. However, the subwindows considered in previous work are limited to rectangles or other specified, simple shapes. With such specified shapes, no subwindow can cover the object of interest tightly. As a result, the desired subwindow around the object of interest may not be optimal in terms of the localization objective function, and cannot be detected by a subwindow search algorithm. In this paper, we propose a new graph-theoretic approach for object localization by searching for an optimal subwindow without pre-specifying its shape. Instead, we require the resulting subwindow to be well aligned with edge pixels that are detected from the image. This requirement is quantified and integrated into the localization objective function based on the widely-used bag of visual words technique. We show that the ratio-contour graph algorithm can be adapted to find the optimal free-shape subwindow in terms of the new localization objective function. In the experiment, we test the proposed approach on the PASCAL VOC 2006 and VOC 2007 databases for localizing several categories of animals. We find that its performance is better than the previous efficient subwindow search algorithm. 1
    corecore