4,760 research outputs found

    Massively Parallel Video Networks

    Full text link
    We introduce a class of causal video understanding models that aims to improve efficiency of video processing by maximising throughput, minimising latency, and reducing the number of clock cycles. Leveraging operation pipelining and multi-rate clocks, these models perform a minimal amount of computation (e.g. as few as four convolutional layers) for each frame per timestep to produce an output. The models are still very deep, with dozens of such operations being performed but in a pipelined fashion that enables depth-parallel computation. We illustrate the proposed principles by applying them to existing image architectures and analyse their behaviour on two video tasks: action recognition and human keypoint localisation. The results show that a significant degree of parallelism, and implicitly speedup, can be achieved with little loss in performance.Comment: Fixed typos in densenet model definition in appendi

    Tube Convolutional Neural Network (T-CNN) for Action Detection in Videos

    Full text link
    Deep learning has been demonstrated to achieve excellent results for image classification and object detection. However, the impact of deep learning on video analysis (e.g. action detection and recognition) has been limited due to complexity of video data and lack of annotations. Previous convolutional neural networks (CNN) based video action detection approaches usually consist of two major steps: frame-level action proposal detection and association of proposals across frames. Also, these methods employ two-stream CNN framework to handle spatial and temporal feature separately. In this paper, we propose an end-to-end deep network called Tube Convolutional Neural Network (T-CNN) for action detection in videos. The proposed architecture is a unified network that is able to recognize and localize action based on 3D convolution features. A video is first divided into equal length clips and for each clip a set of tube proposals are generated next based on 3D Convolutional Network (ConvNet) features. Finally, the tube proposals of different clips are linked together employing network flow and spatio-temporal action detection is performed using these linked video proposals. Extensive experiments on several video datasets demonstrate the superior performance of T-CNN for classifying and localizing actions in both trimmed and untrimmed videos compared to state-of-the-arts

    Learning Spatiotemporal Features for Infrared Action Recognition with 3D Convolutional Neural Networks

    Full text link
    Infrared (IR) imaging has the potential to enable more robust action recognition systems compared to visible spectrum cameras due to lower sensitivity to lighting conditions and appearance variability. While the action recognition task on videos collected from visible spectrum imaging has received much attention, action recognition in IR videos is significantly less explored. Our objective is to exploit imaging data in this modality for the action recognition task. In this work, we propose a novel two-stream 3D convolutional neural network (CNN) architecture by introducing the discriminative code layer and the corresponding discriminative code loss function. The proposed network processes IR image and the IR-based optical flow field sequences. We pretrain the 3D CNN model on the visible spectrum Sports-1M action dataset and finetune it on the Infrared Action Recognition (InfAR) dataset. To our best knowledge, this is the first application of the 3D CNN to action recognition in the IR domain. We conduct an elaborate analysis of different fusion schemes (weighted average, single and double-layer neural nets) applied to different 3D CNN outputs. Experimental results demonstrate that our approach can achieve state-of-the-art average precision (AP) performances on the InfAR dataset: (1) the proposed two-stream 3D CNN achieves the best reported 77.5% AP, and (2) our 3D CNN model applied to the optical flow fields achieves the best reported single stream 75.42% AP

    VideoCapsuleNet: A Simplified Network for Action Detection

    Full text link
    The recent advances in Deep Convolutional Neural Networks (DCNNs) have shown extremely good results for video human action classification, however, action detection is still a challenging problem. The current action detection approaches follow a complex pipeline which involves multiple tasks such as tube proposals, optical flow, and tube classification. In this work, we present a more elegant solution for action detection based on the recently developed capsule network. We propose a 3D capsule network for videos, called VideoCapsuleNet: a unified network for action detection which can jointly perform pixel-wise action segmentation along with action classification. The proposed network is a generalization of capsule network from 2D to 3D, which takes a sequence of video frames as input. The 3D generalization drastically increases the number of capsules in the network, making capsule routing computationally expensive. We introduce capsule-pooling in the convolutional capsule layer to address this issue which makes the voting algorithm tractable. The routing-by-agreement in the network inherently models the action representations and various action characteristics are captured by the predicted capsules. This inspired us to utilize the capsules for action localization and the class-specific capsules predicted by the network are used to determine a pixel-wise localization of actions. The localization is further improved by parameterized skip connections with the convolutional capsule layers and the network is trained end-to-end with a classification as well as localization loss. The proposed network achieves sate-of-the-art performance on multiple action detection datasets including UCF-Sports, J-HMDB, and UCF-101 (24 classes) with an impressive ~20% improvement on UCF-101 and ~15% improvement on J-HMDB in terms of v-mAP scores

    Beyond Gaussian Pyramid: Multi-skip Feature Stacking for Action Recognition

    Full text link
    Most state-of-the-art action feature extractors involve differential operators, which act as highpass filters and tend to attenuate low frequency action information. This attenuation introduces bias to the resulting features and generates ill-conditioned feature matrices. The Gaussian Pyramid has been used as a feature enhancing technique that encodes scale-invariant characteristics into the feature space in an attempt to deal with this attenuation. However, at the core of the Gaussian Pyramid is a convolutional smoothing operation, which makes it incapable of generating new features at coarse scales. In order to address this problem, we propose a novel feature enhancing technique called Multi-skIp Feature Stacking (MIFS), which stacks features extracted using a family of differential filters parameterized with multiple time skips and encodes shift-invariance into the frequency space. MIFS compensates for information lost from using differential operators by recapturing information at coarse scales. This recaptured information allows us to match actions at different speeds and ranges of motion. We prove that MIFS enhances the learnability of differential-based features exponentially. The resulting feature matrices from MIFS have much smaller conditional numbers and variances than those from conventional methods. Experimental results show significantly improved performance on challenging action recognition and event detection tasks. Specifically, our method exceeds the state-of-the-arts on Hollywood2, UCF101 and UCF50 datasets and is comparable to state-of-the-arts on HMDB51 and Olympics Sports datasets. MIFS can also be used as a speedup strategy for feature extraction with minimal or no accuracy cost

    Learning to Generate Time-Lapse Videos Using Multi-Stage Dynamic Generative Adversarial Networks

    Full text link
    Taking a photo outside, can we predict the immediate future, e.g., how would the cloud move in the sky? We address this problem by presenting a generative adversarial network (GAN) based two-stage approach to generating realistic time-lapse videos of high resolution. Given the first frame, our model learns to generate long-term future frames. The first stage generates videos of realistic contents for each frame. The second stage refines the generated video from the first stage by enforcing it to be closer to real videos with regard to motion dynamics. To further encourage vivid motion in the final generated video, Gram matrix is employed to model the motion more precisely. We build a large scale time-lapse dataset, and test our approach on this new dataset. Using our model, we are able to generate realistic videos of up to 128×128128\times 128 resolution for 32 frames. Quantitative and qualitative experiment results have demonstrated the superiority of our model over the state-of-the-art models.Comment: To appear in Proceedings of CVPR 201
    • …
    corecore