684,985 research outputs found

    Fragmentation Functions approach in pQCD fragmentation phenomena

    Get PDF
    Next-to-leading order parton fragmentation functions into light mesons are presented. They have been extracted from real and simulated e+e−e^+e^- data and used to predict inclusive single particle distributions at different machines.Comment: proceeding of the XXXI Rencontres de Morion

    Chameleon Fragmentation

    Full text link
    A scalar field dark energy candidate could couple to ordinary matter and photons, enabling its detection in laboratory experiments. Here we study the quantum properties of the chameleon field, one such dark energy candidate, in an "afterglow" experiment designed to produce, trap, and detect chameleon particles. In particular, we investigate the possible fragmentation of a beam of chameleon particles into multiple particle states due to the highly non-linear interaction terms in the chameleon Lagrangian. Fragmentation could weaken the constraints of an afterglow experiment by reducing the energy of the regenerated photons, but this energy reduction also provides a unique signature which could be detected by a properly-designed experiment. We show that constraints from the CHASE experiment are essentially unaffected by fragmentation for Ï•4\phi^4 and 1/Ï•1/\phi potentials, but are weakened for steeper potentials, and we discuss possible future afterglow experiments.Comment: 27 pages, 7 figure

    The minimum mass for star formation, and the origin of binary brown dwarfs

    Get PDF
    Our first aim is to calculate the minimum mass for Primary Fragmentation in a variety of potential star-formation scenarios, i.e. (i) hierarchical fragmentation of a 3-D medium; (ii) one-shot, 2-D fragmentation of a shock-compressed layer; (iii) fragmentation of a circumstellar disc. Our second aim is to evaluate the role of H2 dissociation in facilitating Secondary Fragmentation and thereby producing close, low-mass binaries. Results: (i)For contemporary, local star formation, the minimum mass for Primary Fragmentation is in the range 0.001-0.004Msun, irrespective of the scenario considered. (ii)Circumstellar discs are only able to radiate fast enough to undergo Primary Fragmentation in their cool outer parts (R>100AU). Therefore brown dwarfs (BDs) should have difficulty forming by Primary Fragmentation at R<30AU, explaining the Brown Dwarf Desert.Conversely, Primary Fragmentation at R>100AU could be the source of brown dwarfs in wide orbits, and could explain why massive discs with Rd>100AU are rarely seen.(iii)H2 dissociation can lead to collapse and Secondary Fragmentation, thereby converting primary fragments into close, low-mass binaries, with semi-major axes a~5AU(Msystem/0.1Msun), in good agreement with observation; in this case, the minimum mass for Primary Fragmentation becomes a minimum system mass, rather than a minimum stellar mass.(iv)Any primary fragment can undergo Secondary Fragmentation, producing a close low-mass binary, provided only that the fragment is spinning. Secondary Fragmentation is therefore most likely in fragments formed in the outer parts of discs, and this could explain why a BD in a wide orbit about a Sun-like star has a greater likelihood of having a BD companion than a BD in the field -as seems to be observed.Comment: 15 pages, A&A accepte

    On the Application of Gluon to Heavy Quarkonium Fragmentation Functions

    Get PDF
    We analyze the uncertainties induced by different definitions of the momentum fraction zz in the application of gluon to heavy quarkonium fragmentation function. We numerically calculate the initial g→J/ψg \to J / \psi fragmentation functions by using the non-covariant definitions of zz with finite gluon momentum and find that these fragmentation functions have strong dependence on the gluon momentum k⃗\vec{k}. As ∣k⃗∣→∞| \vec{k} | \to \infty, these fragmentation functions approach to the fragmentation function in the light-cone definition. Our numerical results show that large uncertainties remains while the non-covariant definitions of zz are employed in the application of the fragmentation functions. We present for the first time the polarized gluon to J/ψJ/\psi fragmentation functions, which are fitted by the scheme exploited in this work.Comment: 11 pages, 7 figures;added reference for sec.

    Fragmentation of compositions and intervals

    Get PDF
    The fragmentation processes of exchangeable partitions have already been studied by several authors. In this paper, we examine rather fragmentation of exchangeable compositions, that means partitions of N\mathbb{N} where the order of the blocks counts. We will prove that such a fragmentation is bijectively associated to an interval fragmentation. Using this correspondence, we then calculate the Hausdorff dimension of certain random closed set that arise in interval fragmentations and we study Ruelle's interval fragmentation

    QCD evolution of naive-time-reversal-odd fragmentation functions

    Full text link
    We study QCD evolution equations of the first transverse-momentum-moment of the naive-time-reversal-odd fragmentation functions - the Collins function and the polarizing fragmentation function. We find for the Collins function case that the evolution kernel has a diagonal piece same as that for the transversity fragmentation function, while for the polarizing fragmentation function case this piece is the same as that for the unpolarized fragmentation function. Our results might have important implications in the current global analysis of spin asymmetries.Comment: 8 pages,4 figure

    Quantification of habitat fragmentation reveals extinction risk in terrestrial mammals

    Get PDF
    Although habitat fragmentation is often assumed to be a primary driver of extinction, global patterns of fragmentation and its relationship to extinction risk have not been consistently quantified for any major animal taxon. We developed high-resolution habitat fragmentation models and used phylogenetic comparative methods to quantify the effects of habitat fragmentation on the world's terrestrial mammals, including 4,018 species across 26 taxonomic Orders. Results demonstrate that species with more fragmentation are at greater risk of extinction, even after accounting for the effects of key macroecological predictors, such as body size and geographic range size. Species with higher fragmentation had smaller ranges and a lower proportion of high-suitability habitat within their range, andmost high-suitability habitat occurred outside of protected areas, further elevating extinction risk. Our models provide a quantitative evaluation of extinction risk assessments for species, allow for identification of emerging threats in species not classified as threatened, and provide maps of global hotspots of fragmentation for the world's terrestrial mammals. Quantification of habitat fragmentation will help guide threat assessment and strategic priorities for global mammal conservation

    Weak solutions to the continuous coagulation equation with multiple fragmentation

    Get PDF
    The existence of weak solutions to the continuous coagulation equation with multiple fragmentation is shown for a class of unbounded coagulation and fragmentation kernels, the fragmentation kernel having possibly a singularity at the origin. This result extends previous ones where either boundedness of the coagulation kernel or no singularity at the origin for the fragmentation kernel were assumed
    • …
    corecore