523,278 research outputs found
Fracture toughness testing data: A technology survey and bibliography
Announced survey includes reports covering fracture toughness testing for various structural materials including information on plane strain and developing areas of mixed mode and plane strain test conditions. Bibliography references cite work and conclusions in fracture toughness testing and application of fracture toughness test data, and in fracture mechanics analysis
Analysis of an atomistic model for anti-plane fracture
We develop a model for an anti-plane crack defect posed on a square lattice
under an interatomic pair-potential with nearest-neighbour interactions. In
particular, we establish existence, local uniqueness and stability of solutions
for small loading parameters and further prove qualitatively sharp far-field
decay estimates. The latter requires establishing decay estimates for the
corresponding lattice Green's function, which are of independent interest
Age-related changes to macrophages are detrimental to fracture healing in mice.
The elderly population suffers from higher rates of complications during fracture healing that result in increased morbidity and mortality. Inflammatory dysregulation is associated with increased age and is a contributing factor to the myriad of age-related diseases. Therefore, we investigated age-related changes to an important cellular regulator of inflammation, the macrophage, and the impact on fracture healing outcomes. We demonstrated that old mice (24 months) have delayed fracture healing with significantly less bone and more cartilage compared to young mice (3 months). The quantity of infiltrating macrophages into the fracture callus was similar in old and young mice. However, RNA-seq analysis demonstrated distinct differences in the transcriptomes of macrophages derived from the fracture callus of old and young mice, with an up-regulation of M1/pro-inflammatory genes in macrophages from old mice as well as dysregulation of other immune-related genes. Preventing infiltration of the fracture site by macrophages in old mice improved healing outcomes, with significantly more bone in the calluses of treated mice compared to age-matched controls. After preventing infiltration by macrophages, the macrophages remaining within the fracture callus were collected and examined via RNA-seq analysis, and their transcriptome resembled macrophages from young calluses. Taken together, infiltrating macrophages from old mice demonstrate detrimental age-related changes, and depleting infiltrating macrophages can improve fracture healing in old mice
Spartan Release Engagement Mechanism (REM) stress and fracture analysis
The revised stress and fracture analysis of the Spartan REM hardware for current load conditions and mass properties is presented. The stress analysis was performed using a NASTRAN math model of the Spartan REM adapter, base, and payload. Appendix A contains the material properties, loads, and stress analysis of the hardware. The computer output and model description are in Appendix B. Factors of safety used in the stress analysis were 1.4 on tested items and 2.0 on all other items. Fracture analysis of the items considered fracture critical was accomplished using the MSFC Crack Growth Analysis code. Loads and stresses were obtaind from the stress analysis. The fracture analysis notes are located in Appendix A and the computer output in Appendix B. All items analyzed met design and fracture criteria
Fracture Model Reduction and Optimization for Forchheimer Flows in Reservoir
In this study, we analyze the flow filtration process of slightly
compressible fluids in fractured porous media. We model the coupled fractured
porous media system, where the linear Darcy flow is considered in porous media
and the nonlinear Forchheimer equation is used inside the fracture.
Flow in the fracture is modeled as a reduced low dimensional BVP which is
coupled with an equation in the reservoir. We prove that the solution of the
reduced model can serve very accurately to approximate the solution of the
actual high-dimensional flow in reservoir fracture system, because the
thickness of the fracture is small. In the analysis we consider two types of
Forchhemer flows in the fracture: isotropic and anisotropic, which are
different in their nature.
Using method of reduction, we developed a formulation for an optimal design
of the fracture, which maximizes the capacity of the fracture in the reservoir
with fixed geometry. Our method, which is based on a set point control
algorithm, explores the coupled impact of the fracture geometry and
beta-Forchheimer coefficient
Patient level pooled analysis of 68,500 patients from seven major vitamin D fracture trials in the US and Europe
Objectives To identify participants’ characteristics that influence the anti-fracture efficacy of vitamin D or vitamin
D plus calcium with respect to any fracture, hip fracture, and clinical vertebral fracture and to assess the influence of dosing regimens and co-administration of calcium. Design Individual patient data analysis using pooled data from randomised trials. Data sources Seven major randomised trials of vitamin D with calcium or vitamin D alone, yielding a total of 68 517 participants (mean age 69.9 years, range 47-107 years, 14.7% men). Study selection Studies included were randomised studies with at least one intervention arm in which vitamin D was given, fracture as an outcome, and at least 1000 participants. Data synthesis Logistic regression analysis was used to identify significant interaction terms, followed by Cox’s proportional hazards models incorporating age, sex, fracture history, and hormone therapy and bisphosphonate use. Results Trials using vitamin D with calcium showed a
reduced overall risk of fracture (hazard ratio 0.92, 95% confidence interval 0.86 to 0.99, P=0.025) and hip fracture (all studies: 0.84, 0.70 to 1.01, P=0.07; studies using 10 μg of vitamin D given with calcium: 0.74, 0.60 to 0.91, P=0.005). For vitamin D alone in daily doses of 10 μg or 20 μg, no significant effects were found. No interaction was found between fracture history and treatment
response, nor any interaction with age, sex, or hormone replacement therapy. Conclusion This individual patient data analysis indicates that vitamin D given alone in doses of 10-20 μg is not effective in preventing fractures. By contrast, calcium and vitamin D given together reduce hip fractures and total fractures, and probably vertebral fractures, irrespective of age, sex, or previous fractures.The WHI program is funded by the National Heart, Lung, and Blood Institute, National Institutes of Health, US Department of Health and Human Services through contracts N01WH22110, 24152, 32100-2, 32105-6, 32108-9, 32111-13, 32115, 32118-32119, 32122, 42107-26, 42129-32, and 44221. AA acknowledges personal funding from the UK Medical Research Council and Chief Scientist Office of the Scottish Government Health Directorates
A genome-wide association study demonstrates significant genetic variation for fracture risk in Thoroughbred racehorses
Background:
Thoroughbred racehorses are subject to non-traumatic distal limb bone fractures that occur during racing and exercise. Susceptibility to fracture may be due to underlying disturbances in bone metabolism which have a genetic cause. Fracture risk has been shown to be heritable in several species but this study is the first genetic analysis of fracture risk in the horse.
Results:
Fracture cases (n = 269) were horses that sustained catastrophic distal limb fractures while racing on UK racecourses, necessitating euthanasia. Control horses (n = 253) were over 4 years of age, were racing during the same time period as the cases, and had no history of fracture at the time the study was carried out. The horses sampled were bred for both flat and National Hunt (NH) jump racing. 43,417 SNPs were employed to perform a genome-wide association analysis and to estimate the proportion of genetic variance attributable to the SNPs on each chromosome using restricted maximum likelihood (REML). Significant genetic variation associated with fracture risk was found on chromosomes 9, 18, 22 and 31. Three SNPs on chromosome 18 (62.05 Mb – 62.15 Mb) and one SNP on chromosome 1 (14.17 Mb) reached genome-wide significance (p <0.05) in a genome-wide association study (GWAS). Two of the SNPs on ECA 18 were located in a haplotype block containing the gene zinc finger protein 804A (ZNF804A). One haplotype within this block has a protective effect (controls at 1.95 times less risk of fracture than cases, p = 1 × 10-4), while a second haplotype increases fracture risk (cases at 3.39 times higher risk of fracture than controls, p = 0.042).
Conclusions:
Fracture risk in the Thoroughbred horse is a complex condition with an underlying genetic basis. Multiple genomic regions contribute to susceptibility to fracture risk. This suggests there is the potential to develop SNP-based estimators for genetic risk of fracture in the Thoroughbred racehorse, using methods pioneered in livestock genetics such as genomic selection. This information would be useful to racehorse breeders and owners, enabling them to reduce the risk of injury in their horses
Development of a Step Counting Algorithm Using the Ambulatory Tibia Load Analysis System for Tibia Fracture Patients
Introduction: Ambulation can be used to monitor the healing of lower extremity fractures. However, the ambulatory behavior of tibia fracture patients remains unknown due to an inability to continuously quantify ambulation outside of the clinic. The goal of this study was to design and validate an algorithm to assess ambulation in tibia fracture patients using the ambulatory tibial load analysis system during recovery, outside of the clinic. Methods Data were collected from a cyclic tester, 14 healthy volunteers performing a 2-min walk test on the treadmill, and 10 tibia fracture patients who wore the ambulatory tibial load analysis system during recovery. Results The algorithm accurately detected 2000/2000 steps from simulated ambulatory data. (see full text for full abstract
- …
