3,340 research outputs found
Understanding fast macroscale fracture from microcrack post mortem patterns
Dynamic crack propagation drives catastrophic solid failures. In many
amorphous brittle materials, sufficiently fast crack growth involves
small-scale, high-frequency microcracking damage localized near the crack tip.
The ultra-fast dynamics of microcrack nucleation, growth and coalescence is
inaccessible experimentally and fast crack propagation was therefore studied
only as a macroscale average. Here, we overcome this limitation in
polymethylmethacrylate, the archetype of brittle amorphous materials: We
reconstruct the complete spatio-temporal microcracking dynamics, with
micrometer / nanosecond resolution, through post mortem analysis of the
fracture surfaces. We find that all individual microcracks propagate at the
same low, load-independent, velocity. Collectively, the main effect of
microcracks is not to slow down fracture by increasing the energy required for
crack propagation, as commonly believed, but on the contrary to boost the
macroscale velocity through an acceleration factor selected on geometric
grounds. Our results emphasize the key role of damage-related internal
variables in the selection of macroscale fracture dynamics.Comment: 9 pages, 5 figures + supporting information (15 pages
Fatigue response of as built DMLS processed Maraging Steel and effects of machining and heat and surface treatments
The main motivations for this study arise from the need for an assessment of the fatigue performance of DMLS produced Maraging Steel MS1, when it is used in the \u201cas fabricated\u201d state. The literature indicates a lack of knowledge from this point of view, moreover the great potentials of the additive process may be more and more incremented, if an easier and cheaper procedure could be used after the building stage. The topic has been tackled experimentally, investigating the impact of heat treatment, machining and micro-shot-peening on the fatigue strength with respect to the \u201cas built state\u201d. The results indicate that heat treatment significantly enhances the fatigue response, probably due to the relaxation of the post-process tensile residual stresses. Machining can also be effective, but it must be followed (not preceded) by micro-shot-peening, to benefit from the compressive residual stress state generated by the latter
A thermodynamically consistent cohesive damage model for the simulation of mixed-mode delamination
This work is devoted to the formulation of a new cohesive model for mixed-mode delamination. The model is based on a thermodynamically consistent isotropic
damage formulation, with consideration of an internal friction mechanism that governs
the interaction between normal and shear opening modes
Surface characterization and influence of anodizing process on fatigue life of Al 7050 alloy
The present study investigates the influence of anodizing process on fatigue life of aluminium alloy 7050-T7451 by performing axial fatigue tests at stress ratio ‘R’ of 0.1. Effects of pre-treatments like degreasing and pickling employed prior to anodizing on fatigue life were studied. The post-exposure surface observations were made by scanning electron microscope (SEM) to characterize the effect of each treatment before fatigue testing. The surface observations have revealed that degreasing did not change the surface topography while pickling solution resulted in the formation of pits at the surface. Energy dispersive spectroscopy (EDS) was used to identify those constituent particles which were responsible for the
pits formation. These pits are of primary concern with respect to accelerated fatigue crack initiation and subsequent anodic coating formation. The fatigue test results have shown that pickling process was detrimental
in reducing the fatigue life significantly while less decrease has been observed for anodized specimens. Analyses of fracture surfaces of pickled specimens have revealed that the process completely changed the crack initiation mechanisms as compared to non-treated specimens and the crack initiation started at the pits. For most of the anodized specimens, fatigue cracks still initiated at the pits with very few cracks initiated from anodic coating. The decrease in fatigue life for pickled and anodized specimens as compared to bare condition has been attributed to decrease in initiation period and multi-site crack
initiations. Multi-site crack initiation has resulted in rougher fractured surfaces for the pickled and anodized specimens as compare to bare specimens tested at same stress levels
Mechanics and mechanisms of fatigue in a WC-Ni hardmetal and a comparative study with respect to WC-Co hardmetals
There is a major interest in replacing cobalt binder in hardmetals (cemented carbides) aiming for materials with similar or even improved properties at a lower price. Nickel is one of the materials most commonly used as a binder alternative to cobalt in these metal-ceramic composites. However, knowledge on mechanical properties and particularly on fatigue behavior of Ni-base cemented carbides is relatively scarce. In this study, the fatigue mechanics and mechanisms of a fine grained WC-Ni grade is assessed. In doing so, fatigue crack growth (FCG) behavior and fatigue limit are determined, and the attained results are compared to corresponding fracture toughness and flexural strength. An analysis of the results within a fatigue mechanics framework permits to validate FCG threshold as the effective fracture toughness under cyclic loading. Experimentally determined data are then used to analyze the fatigue susceptibility of the studied material. It is found that the fatigue sensitivity of the WC-Ni hardmetal investigated is close to that previously reported for Co-base cemented carbides with alike binder mean free path. Additionally, fracture modes under stable and unstable crack growth conditions are inspected. It is evidenced that stable crack growth under cyclic loading within the nickel binder exhibit faceted, crystallographic features. This microscopic failure mode is rationalized on the basis of the comparable sizes of the cyclic plastic zone ahead of the crack tip and the characteristic microstructure length scale where fatigue degradation phenomena take place in hardmetals, i.e. the binder mean free path. (C) 2014 Elsevier Ltd. All rights reserved.Peer ReviewedPostprint (author’s final draft
Propagation of Fatigue Cracks under Shear Loading Modes II, III and II+III in the Near-Threshold Region
Práce je zaměřena na šíření únavových trhlin v módech II, III a II + III v prahové oblasti v kovových materiálech. Byly provedeny experimenty pro ARMCO železo, titan, nikl a austenitickou ocel na třech druzích vzorků pro zatěžování trhliny ve smykových módech. Byl použit zvláštní způsob vytváření iniciační trhliny, který eliminoval efekt zavírání trhliny na začátku smykového zatěžování. Ve všech zkoumaných materiálech byly efektivní prahové hodnoty v módu II přibližně 1,7 krát nižší než v módu III. Měřením úhlů lokálních odklonů a natočení lomových faset s použitím stereofotogrammetrie v SEM bylo usuzováno na tendenci trhliny k vyhýbání do lokálního módu I. Nejmenší úhly byly zjištěny u ARMCO železa pro trhliny v módech II i III, středně velké úhly u titanu a niklu a největší úhly (vyhnutí do čistého módu I) byly pozorovány u austenitické oceli. Tyto rozdíly lze vysvětlit různým počtem dostupných skluzových systémů v krystalových mřížkách daných materiálů. Poměry mezi naměřenými prahovými hodnotami v módu I, II a III byly srovnány s předpověďmi teoretických modelů. Byl navržen analytický vztah pro efektivní prahové hodnoty v módu II, který byl v dobré shodě s experimentálními výsledky. Pomocí efektivních prahových hodnot bylo vyčísleno kritérium pro vyhýbání do módu I, které vedlo ke kritickému úhlu odklonu 40° souvisejícímu s přechodem z lokálního smykového módu do otevíracího módu.The work is focused on fatigue crack propagation under modes II, III and II + III in the near-threshold region in metallic materials. Experiments were conducted for ARMCO iron, titanium, nickel and stainless steel on three types of specimens for shear-mode crack loading. A special technique of precrack generation was used which enabled a closure-free loading at the beginning of the shear-mode experiments. For all investigated materials the effective thresholds under the remote mode II loading were found to be about 1.7 times lower than those under the remote mode III. Tendency to local mode I branching was assessed by a measurement of local deflection and twist angles of fracture facets using stereophoto-grammetry in SEM. The lowest angles of both mode II and mode III cracks were identified for the ARMCO iron, the intermediate ones in titanium and nickel and the highest ones (pure mode I branches) were determined for the stainless steel. These differences can be explained by different numbers of available slip systems in crystal lattices of investigated materials. Ratios of measured effective thresholds in modes I, II and III were compared with results predicted by theoretical models. An analytical formula for effective mode-II thresholds was proposed and found in a good agreement with experimental results. The mode I branching criterion in terms of effective thresholds led to a critical deflection angle of 40° related to a transition from local shear to opening mode.
- …
