296 research outputs found

    Improving relay based cellular networks performance in highly user congested and emergency situations

    Get PDF
    PhDRelay based cellular networks (RBCNs) are the technologies that incorporate multi-hop communication into traditional cellular networks. A RBCN can potentially support higher data rates, more stable radio coverage and more dynamic services. In reality, RBCNs still suffer from performance degradation in terms of high user congestion, base station failure and overloading in emergency situations. The focus of this thesis is to explore the potential to improve IEEE802.16j supported RBCN performance in user congestion and emergency situations using adjustments to the RF layer (by antenna adjustments or extensions using multi-hop) and cooperative adjustment algorithms, e.g. based on controlling frequency allocation centrally and using distributed approaches. The first part of this thesis designs and validates network reconfiguration algorithms for RBCN, including a cooperative antenna power control algorithm and a heuristic antenna tilting algorithm. The second part of this thesis investigates centralized and distributed dynamic frequency allocation for higher RBCN frequency efficiency, network resilience, and computation simplicity. It is demonstrated that these benefits mitigate user congestion and base station failure problems significantly. Additionally, interweaving coordinated dynamic frequency allocation and antenna tilting is investigated in order to obtain the benefits of both actions. The third part of this thesis incorporates Delay Tolerate Networking (DTN) technology into RBCN to let users self-organize to connect to functional base station through multi-hops supported by other users. Through the use of DTN, RBCN coverage and performance are improved. This thesis explores the augmentation of DTN routing protocols to let more un-covered users connect to base stations and improve network load balancin

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    Multi-cell Coordination Techniques for DL OFDMA Multi-hop Cellular Networks

    Get PDF
    The main objective of this project is to design coordinated spectrum sharing and reuse techniques among cells with the goal of mitigating interference at the cell edge and enhance the overall system capacity. The performance of the developed algorithm will be evaluated in an 802.16m (WiMAX) environment. In conventional cellular networks, frequency planning is usually considered to keep an acceptable signal-to-interference-plus noise ratio (SINR) level, especially at cell boundaries. Frequency assignations are done under a cell-by-cell basis, without any coordination between them to manage interference. Particularly this approach, however, hampers the system spectral efficiency at low reuse rates. For a specific reuse factor, the system throughput depends highly on the mobile station (MS) distribution and the channel conditions of the users to be served. If users served from different base stations (BS) experience a low level of interference, radio resources may be reused, applying a high reuse factor and thus, increasing the system spectral efficiency. On the other side, if the served users experience large interference, orthogonal transmissions are better and therefore a lower frequency reuse factor should be used. As a consequence, a dynamic reuse factor is preferable over a fixed one. This work addresses the design of joint multi-cell resource allocation and scheduling with coordination among neighbouring base stations (outer coordination) or sectors belonging to the same one (inner coordination) as a way to achieve flexible reuse factors. We propose a convex optimization framework to address the problem of coordinating bandwidth allocation in BS coordination problems. The proposed framework allows for different scheduling policies, which have an impact on the suitability of the reuse factor, since they determine which users have to be served. Therefore, it makes sense to consider the reuse factor as a result of the scheduling decision. To support the proposed techniques the BSs shall be capable of exchanging information with each other (decentralized approach) or with some control element in the back-haul network as an ASN gateway or some self-organization control entity (centralized approach)

    Distributed radio resource management in LTE-advanced networks with type 1 relay

    Get PDF
    Long Term Evolution (LTE)-Advanced is proposed as a candidate of the 4th generation (4G) mobile telecommunication systems. As an evolved version of LTE, LTE- Advanced is also based on Orthogonal Frequency Division Multiplexing (OFDM) and in addition, it adopts some emerging technologies, such as relaying. Type I relay nodes, de_ned in LTE-Advanced standards, can control their cells with their own reference signals and have Radio Resource Management (RRM) functionalities. The rationale of RRM is to decide which resources are allocated to which users for optimising performance metrics, such as throughput, fairness, power consumption and Quality of Service (QoS). The RRM techniques in LTE-Advanced networks, including route selection, resource partitioning and resource scheduling, are facing new challenges brought by Type 1 relay nodes and increasingly becoming research focuses in recent years. The research work presented in this thesis has made the following contributions. A service-aware adaptive bidirectional optimisation route selection strategy is proposed to consider both uplink optimisation and downlink optimisation according to service type. The load between di_erent serving nodes, including eNBs and relay nodes, are rebalanced under the _xed resource partitioning. The simulation results show that larger uplink throughputs and bidirectional throughputs can be achieved, compared with existing route selection strategies. A distributed two-hop proportional fair resource allocation scheme is proposed in order to provide better two-hop end-to-end proportional fairness for all the User Equipments (UEs), especially for the relay UEs. The resource partitioning is based on the cases of none Frequency Reuse (FR) pattern, full FR pattern and partial FR patterns. The resource scheduling in access links and backhaul links are considered jointly. A proportional fair joint route selection and resource partitioning algorithm isproposed to obtain an improved solution to the two-hop Adaptive Partial Frequency Reusing (APFR) problem with one relay node per cell. In addition, two special situations of APFR, full FR and no FR, are utilised to narrow the iterative search range of the proposed algorithm and reduce its complexity

    Joint relay selection and bandwidth allocation for cooperative relay network

    Get PDF
    Cooperative communication that exploits multiple relay links offers significant performance improvement in terms of coverage and capacity for mobile data subscribers in hierarchical cellular network. Since cooperative communication utilizes multiple relay links, complexity of the network is increased due to the needs for efficient resource allocation. Besides, usage of multiple relay links leads to Inter- Cell Interference (ICI). The main objective of this thesis is to develop efficient resource allocation scheme minimizes the effect of ICI in cooperative relay network. The work proposed a joint relay selection and bandwidth allocation in cooperative relay network that ensures high achievable data rate with high user satisfaction and low outage percentage. Two types of network models are considered: single cell network and multicell network. Joint Relay Selection and Bandwidth Allocation with Spatial Reuse (JReSBA_SR) and Optimized JReSBA_SR (O_JReSBA_SR) are developed for single cell network. JReSBA_SR considers link quality and user demand for resource allocation, and is equipped with spatial reuse to support higher network load. O_JReSBA_SR is an enhancement of JReSBA_SR with decision strategy based on Markov optimization. In multicell network, JReSBA with Interference Mitigation (JReSBA_IM) and Optimized JReSBA_IM (O_JReSBA_IM) are developed. JReSBA_IM deploys sectored-Fractional Frequency Reuse (sectored- FFR) partitioning concept in order to minimize the effect of ICI between adjacent cells. The performance is evaluated in terms of cell achievable rate, Outage Percentage (OP) and Satisfaction Index (SI). The result for single cell network shows that JReSBA_SR has notably improved the cell achievable rate by 35.0%, with reduced OP by 17.7% compared to non-joint scheme at the expense of slight increase in complexity at Relay Node (RN). O_JReSBA_SR has further improved the cell achievable rate by 13.9% while maintaining the outage performance with reduced complexity compared to JReSBA_SR due to the effect of optimization. The result for multicell network shows that JReSBA_IM enhances the cell achievable rate up to 65.1% and reduces OP by 35.0% as compared to benchmark scheme. Similarly, O_JReSBA_IM has significantly reduced the RN complexity of JReSBA_IM scheme, improved the cell achievable rate up to 9.3% and reduced OP by 1.3%. The proposed joint resource allocation has significantly enhanced the network performance through spatial frequency reuse, efficient, fair and optimized resource allocation. The proposed resource allocation is adaptable to variation of network load and can be used in any multihop cellular network such as Long Term Evolution-Advanced (LTE-A) network
    corecore