2,366 research outputs found

    Traffic-Driven Spectrum Allocation in Heterogeneous Networks

    Full text link
    Next generation cellular networks will be heterogeneous with dense deployment of small cells in order to deliver high data rate per unit area. Traffic variations are more pronounced in a small cell, which in turn lead to more dynamic interference to other cells. It is crucial to adapt radio resource management to traffic conditions in such a heterogeneous network (HetNet). This paper studies the optimization of spectrum allocation in HetNets on a relatively slow timescale based on average traffic and channel conditions (typically over seconds or minutes). Specifically, in a cluster with nn base transceiver stations (BTSs), the optimal partition of the spectrum into 2n2^n segments is determined, corresponding to all possible spectrum reuse patterns in the downlink. Each BTS's traffic is modeled using a queue with Poisson arrivals, the service rate of which is a linear function of the combined bandwidth of all assigned spectrum segments. With the system average packet sojourn time as the objective, a convex optimization problem is first formulated, where it is shown that the optimal allocation divides the spectrum into at most nn segments. A second, refined model is then proposed to address queue interactions due to interference, where the corresponding optimal allocation problem admits an efficient suboptimal solution. Both allocation schemes attain the entire throughput region of a given network. Simulation results show the two schemes perform similarly in the heavy-traffic regime, in which case they significantly outperform both the orthogonal allocation and the full-frequency-reuse allocation. The refined allocation shows the best performance under all traffic conditions.Comment: 13 pages, 11 figures, accepted for publication by JSAC-HC

    Interference Management Based on RT/nRT Traffic Classification for FFR-Aided Small Cell/Macrocell Heterogeneous Networks

    Full text link
    Cellular networks are constantly lagging in terms of the bandwidth needed to support the growing high data rate demands. The system needs to efficiently allocate its frequency spectrum such that the spectrum utilization can be maximized while ensuring the quality of service (QoS) level. Owing to the coexistence of different types of traffic (e.g., real-time (RT) and non-real-time (nRT)) and different types of networks (e.g., small cell and macrocell), ensuring the QoS level for different types of users becomes a challenging issue in wireless networks. Fractional frequency reuse (FFR) is an effective approach for increasing spectrum utilization and reducing interference effects in orthogonal frequency division multiple access networks. In this paper, we propose a new FFR scheme in which bandwidth allocation is based on RT/nRT traffic classification. We consider the coexistence of small cells and macrocells. After applying FFR technique in macrocells, the remaining frequency bands are efficiently allocated among the small cells overlaid by a macrocell. In our proposed scheme, total frequency-band allocations for different macrocells are decided on the basis of the traffic intensity. The transmitted power levels for different frequency bands are controlled based on the level of interference from a nearby frequency band. Frequency bands with a lower level of interference are assigned to the RT traffic to ensure a higher QoS level for the RT traffic. RT traffic calls in macrocell networks are also given a higher priority compared with nRT traffic calls to ensure the low call-blocking rate. Performance analyses show significant improvement under the proposed scheme compared with conventional FFR schemes

    Partially-Distributed Resource Allocation in Small-Cell Networks

    Full text link
    We propose a four-stage hierarchical resource allocation scheme for the downlink of a large-scale small-cell network in the context of orthogonal frequency-division multiple access (OFDMA). Since interference limits the capabilities of such networks, resource allocation and interference management are crucial. However, obtaining the globally optimum resource allocation is exponentially complex and mathematically intractable. Here, we develop a partially decentralized algorithm to obtain an effective solution. The three major advantages of our work are: 1) as opposed to a fixed resource allocation, we consider load demand at each access point (AP) when allocating spectrum; 2) to prevent overloaded APs, our scheme is dynamic in the sense that as the users move from one AP to the other, so do the allocated resources, if necessary, and such considerations generally result in huge computational complexity, which brings us to the third advantage: 3) we tackle complexity by introducing a hierarchical scheme comprising four phases: user association, load estimation, interference management via graph coloring, and scheduling. We provide mathematical analysis for the first three steps modeling the user and AP locations as Poisson point processes. Finally, we provide results of numerical simulations to illustrate the efficacy of our scheme.Comment: Accepted on May 15, 2014 for publication in the IEEE Transactions on Wireless Communication

    Control and data channel resource allocation in OFDMA heterogeneous networks

    Get PDF
    This paper investigates the downlink resource allocation problem in Orthogonal Frequency Division Multiple Access (OFDMA) Heterogeneous Networks (HetNets) consisting of macro cells and small cells sharing the same frequency band. Dense deployment of small cells overlaid by a macro layer is considered to be one of the most promising solutions for providing hotspot coverage in future 5G networks. The focus is to devise an optimised policy for small cells’ access to the shared spectrum, in terms of their transmissions, in order to keep small cell served users sum data rate at high levels while ensuring that certain level of quality of service (QoS) for the macro cell users in the vicinity of small cells is provided. Both data and control channel constraints are considered, to ensure that not only the macro cell users’ data rate demands are met, but also a certain level of Bit Error Rate (BER) is ensured for the control channel information. Control channel reliability is especially important as it holds key information to successfully decode the data channel. The problem is addressed by our proposed linear binary integer programming heuristic algorithm which maximises the small cells utility while ensuring the macro users imposed constraints. To further reduce the computational complexity, we propose a progressive interference aware low complexity heuristic solution. Discussion is also presented for the implementation possibility of our proposed algorithms in a practical network. The performance of both the proposed algorithms is compared with the conventional Reuse-1 scheme under different fading conditions and small cell loads. Results show a negligible drop in small cell performance for our proposed schemes, as a trade-off for ensuring all macro users data rate demands, while Reuse-1 scheme can even lead up to 40 % outage when control region of the small cells in heavily loaded
    • …
    corecore