1,597 research outputs found

    Applications of Mathematical Models in Engineering

    Get PDF
    The most influential research topic in the twenty-first century seems to be mathematics, as it generates innovation in a wide range of research fields. It supports all engineering fields, but also areas such as medicine, healthcare, business, etc. Therefore, the intention of this Special Issue is to deal with mathematical works related to engineering and multidisciplinary problems. Modern developments in theoretical and applied science have widely depended our knowledge of the derivatives and integrals of the fractional order appearing in engineering practices. Therefore, one goal of this Special Issue is to focus on recent achievements and future challenges in the theory and applications of fractional calculus in engineering sciences. The special issue included some original research articles that address significant issues and contribute towards the development of new concepts, methodologies, applications, trends and knowledge in mathematics. Potential topics include, but are not limited to, the following: Fractional mathematical models; Computational methods for the fractional PDEs in engineering; New mathematical approaches, innovations and challenges in biotechnologies and biomedicine; Applied mathematics; Engineering research based on advanced mathematical tools

    Tilt Integral Derivative Controller Optimized by Battle Royale Optimization for Wind Generator Connected to Grid

    Get PDF
    Globally the countries are focusing on reducing the carbon footprint leading to a greater effort for electrical energy generation by renewable energy sources, particularly wind. The wind turbines are invariably using doubly fed asynchronous generator. In this paper a controller has been designed for a doubly fed induction motor. The proposed Tilt Integral Derivate controller for was compared with commonly used PI, PID controllers. Several optimization algorithms were used for tuning of controllers and the best one was selected for each type of controller. The controller has been optimized using battlefield optimization. It had been compared with proportional integral controller, fractional order proportional integral derivative controller. Other controllers were optimized using meta heuristic algorithms. The controller enhanced the system response in terms of settling time, rise time and other parameters. The Tilt controller gave the overall superior performance in terms of parameters like rise time, settling time, settling minimum, peak, and peak time. The results were obtained using MATLAB. This paper discusses operation of doubly fed induction motor operation and optimization methods

    Optimal tuning of fractional order controllers for dual active bridge-based DC microgrid including voltage stability assessment

    Get PDF
    In this article, three evolutionary search algorithms: particle swarm optimization (PSO), simulated annealing (SA) and genetic algorithms (GA), have been employed to determine the optimal parameter values of the fractional-order (FO)-PI controllers implemented in the dual active bridge-based (DAB) DC microgrid. The optimum strategy to obtain the parameters of these FO-PI controllers is still a major challenge for many power systems applications. The FO-PI controllers implemented in the DAB are used to control the DC link voltage to the desired value and limit the current flowing through the converter. Accordingly, the investigated control system has six parameters to be tuned simultaneously; Kp1, Ki1, Âż1 for FO-PI voltage controller and Kp2, Ki2, Âż2 for FO-PI current controller. Crucially, this tuning optimization process has been developed to enhance the voltage stability of a DC microgrid. By observing the frequency-domain analysis of the closed-loop and the results of the subsequent time-domain simulations, it has been demonstrated that the evolutionary algorithms have provided optimal controller gains, which ensures the voltage stability of the DC microgrid. The main contribution of the article can be considered in the successful application of evolutionary search algorithms to tune the parameters of FO-based dual loop controllers of a DC microgrid scheme whose power conditioner is a DAB topology.Peer ReviewedPostprint (published version

    Identification of nonlinear systems

    Get PDF

    Enhancement of the Tracking Performance for Robot Manipulator by Using the Feed-forward Scheme and Reasonable Switching Mechanism

    Get PDF
    Robot manipulator has become an exciting topic for many researchers during several decades. They have investigated the advanced algorithms such as sliding mode control, neural network, or genetic scheme to implement these developments. However, they lacked the integration of these algorithms to explore many potential expansions. Simultaneously, the complicated system requires a lot of computational costs, which is not always supported. Therefore, this paper presents a novel design of switching mechanisms to control the robot manipulator. This investigation is expected to achieve superior performance by flexibly adjusting various strategies for better selection. The Proportional-Integral-Derivative (PID) scheme is well-known, easy to implement, and ensures rapid computation while it might not have much control effect. The advanced interval type-2 fuzzy sliding mode control properly deals with nonlinear factors and disturbances. Consequently, the PID scheme is switched when the tracking error is less than the threshold or is far from the target. Otherwise, the interval type-2 fuzzy sliding mode control scheme is activated to cope with unknown factors. The main contributions of this paper are (i) the recommendation of a suitable switching mechanism to drive the robot manipulator, (ii) the successful integration of the interval type-2 fuzzy sliding mode control to track the desired trajectory, and (iii) the launching of several tests to validate the proposed controller with robot model. From these achievements, it would be stated that the proposed approach is effective in tracking performance, robust in disturbance-rejection, and feasible in practical implementation

    Applications of MATLAB in Science and Engineering

    Get PDF
    The book consists of 24 chapters illustrating a wide range of areas where MATLAB tools are applied. These areas include mathematics, physics, chemistry and chemical engineering, mechanical engineering, biological (molecular biology) and medical sciences, communication and control systems, digital signal, image and video processing, system modeling and simulation. Many interesting problems have been included throughout the book, and its contents will be beneficial for students and professionals in wide areas of interest

    Design of Low-Order Controllers using Optimization Techniques

    Get PDF
    In many applications, especially in the process industry, low-level controllers are the workhorses of the automated production lines. The aim of this study has been to provide simple tuning procedures, either optimization-based methods or tuning rules, for design of low-order controllers. The first part of this thesis deals with PID tuning. Design methods or both SISO and MIMO PID controllers based on convex optimization are presented. The methods consist of solving a nonconvex optimization problem by deriving convex approximations of the original problem and solving these iteratively until convergence. The algorithms are fast because of the convex approximations. The controllers obtained minimize low-frequency sensitivity subject to constraints that ensure robustness to process variations and limitations of control signal effort. The second part of this thesis deals with tuning of feedforward controllers. Tuning rules that minimize the integrated-squared-error arising from measurable step disturbances are derived for a controller that can be interpreted as a filtered and possibly time-delayed PD controller. Using a controller structure that decouples the effects of the feedforward and feedback controllers, the controller is optimal both in open and closed loop settings. To improve the high-frequency noise behavior of the feedforward controller, it is proposed that the optimal controller is augmented with a second-order filter. Several aspects on the tuning of this filter are discussed. For systems with PID controllers, the response to step changes in the reference can be improved by introducing set-point weighting. This can be interpreted as feedforward from the reference signal to the control signal. It is shown how these weights can be found by solving a convex optimization problem. Proportional set-point weight that minimizes the integrated-absolute-error was obtained for a batch of over 130 different processes. From these weights, simple tuning rules were derived and the performance was evaluated on all processes in the batch using five different feedback controller tuning methods. The proposed tuning rules could improve the performance by up to 45% with a modest increase in actuation

    Time Delay Handling in Dominant Pole Placement with PID Controllers to Obtain Stability Regions using Random Sampling

    Get PDF
    This is the author accepted manuscript. The final version is available from Taylor & Francis via the DOI in this recordThis paper proposes a new formulation of proportional-integral-derivative (PID) controller design using the dominant pole placement method for handling second order plus time delay (SOPTD) systems. The proposed method does not contain any finite term approximation like different orders of Pade for handling the time-delay term, in the quasi-polynomial characteristic equation. Rather it transforms the transcendental exponential delay term of the plant into finite number of discrete-time poles by a suitable choice of the sampling time. The PID controller has been represented by Tustin’s discretization method and the PID controller gains are obtained using the dominant pole placement criterion where the plant is discretized using the pole-zero matching method. A random search and optimization method has been used to obtain the stability region in the desired closed loop parameters space by minimising the integral squared error (ISE) criterion by randomly sampling from the stabilizable region and then these closed loop parameters are mapped on to the PID controller gains. Effectiveness of the proposed methodology is shown for nine test-bench plants with different lag to delay ratios and open loop damping levels, and the effect of choosing different sampling times, using credible numerical simulations.ESIF ERDF Cornwall New Energy (CNE

    Fractional Calculus and the Future of Science

    Get PDF
    Newton foresaw the limitations of geometry’s description of planetary behavior and developed fluxions (differentials) as the new language for celestial mechanics and as the way to implement his laws of mechanics. Two hundred years later Mandelbrot introduced the notion of fractals into the scientific lexicon of geometry, dynamics, and statistics and in so doing suggested ways to see beyond the limitations of Newton’s laws. Mandelbrot’s mathematical essays suggest how fractals may lead to the understanding of turbulence, viscoelasticity, and ultimately to end of dominance of the Newton’s macroscopic world view.Fractional Calculus and the Future of Science examines the nexus of these two game-changing contributions to our scientific understanding of the world. It addresses how non-integer differential equations replace Newton’s laws to describe the many guises of complexity, most of which lay beyond Newton’s experience, and many had even eluded Mandelbrot’s powerful intuition. The book’s authors look behind the mathematics and examine what must be true about a phenomenon’s behavior to justify the replacement of an integer-order with a noninteger-order (fractional) derivative. This window into the future of specific science disciplines using the fractional calculus lens suggests how what is seen entails a difference in scientific thinking and understanding
    • …
    corecore