10,364 research outputs found
Diesel Exhaust Activates & Primes Microglia: Air Pollution, Neuroinflammation, & Regulation of Dopaminergic Neurotoxicity
BACKGROUND:
Air pollution is linked to central nervous system disease, but the mechanisms responsible are poorly understood. OBJECTIVES:
Here, we sought to address the brain-region-specific effects of diesel exhaust (DE) and key cellular mechanisms underlying DE-induced microglia activation, neuroinflammation, and dopaminergic (DA) neurotoxicity. METHODS:
Rats were exposed to DE (2.0, 0.5, and 0 mg/m3) by inhalation over 4 weeks or as a single intratracheal administration of DE particles (DEP; 20 mg/kg). Primary neuron-glia cultures and the HAPI (highly aggressively proliferating immortalized) microglial cell line were used to explore cellular mechanisms. RESULTS:
Rats exposed to DE by inhalation demonstrated elevated levels of whole-brain IL-6 (interleukin-6) protein, nitrated proteins, and IBA-1 (ionized calcium-binding adaptor molecule 1) protein (microglial marker), indicating generalized neuroinflammation. Analysis by brain region revealed that DE increased TNFα (tumor necrosis factor-α), IL-1β, IL-6, MIP-1α (macrophage inflammatory protein-1α) RAGE (receptor for advanced glycation end products), fractalkine, and the IBA-1 microglial marker in most regions tested, with the midbrain showing the greatest DE response. Intratracheal administration of DEP increased microglial IBA-1 staining in the substantia nigra and elevated both serum and whole-brain TNFα at 6 hr posttreatment. Although DEP alone failed to cause the production of cytokines and chemokines, DEP (5 μg/mL) pretreatment followed by lipopolysaccharide (2.5 ng/mL) in vitro synergistically amplified nitric oxide production, TNFα release, and DA neurotoxicity. Pretreatment with fractalkine (50 pg/mL) in vitro ameliorated DEP (50 μg/mL)-induced microglial hydrogen peroxide production and DA neurotoxicity. CONCLUSIONS:
Together, these findings reveal complex, interacting mechanisms responsible for how air pollution may cause neuroinflammation and DA neurotoxicity
Chemokine fractalkine/CX3CL1 negatively modulates active glutamatergic synapses in rat hippocampal neurons
We examined the effects of the chemokine fractalkine (CX3CL1) on EPSCs evoked by electrical stimulation of Schaffer collaterals in patch-clamped CA1 pyramidal neurons from rat hippocampal slices. Acute application of CX3CL1 caused a sustained reduction of EPSC amplitude, with partial recovery after washout. CX3CL1-induced EPSC depression is postsynaptic in nature, because paired-pulse ratio was maintained, amplitude distribution of spontaneous excitatory postsynaptic currents shifted to lower values, and whole-cell current responses to AMPA were reversibly inhibited. EPSC depression by CX3CL1 is mediated by CX3CL1 receptor (CX3CR1), because CX3CL1 was unable to influence EPSC amplitude in CA1 pyramidal neurons from CX3CR1 knock-out mice. CX3CL1-induced depression of both EPSC and AMPA current was not observed in the absence of afferent fiber stimulation or AMPA receptor activation, respectively, indicating the requirement of sustained receptor activity for its development. Findings obtained from hippocampal slices, cultured hippocampal neurons, and transfected human embryonic kidney cells indicate that a Ca2+-, cAMP-, and phosphatase-dependent process is likely to modulate CX3CL1 effects because of the following: (1) CX3CL1-induced depression was antagonized by intracellular BAPTA, 8Br-cAMP, phosphatase inhibitors, and pertussis toxin (PTX); (2) CX3CL1 inhibited forskolin-induced cAMP formation sensitive to PTX; and (3) CX3CL1 inhibited forskolin-induced Ser845 GluR1 phosphorylation, which was sensitive to PTX and dependent on Ca2+ and phosphatase activity. Together, these findings indicate that CX3CL1 negatively modulates AMPA receptor function at active glutamatergic synapses through cell-signaling pathways by influencing the balance between kinase and phosphatase activity
Lenalidomide reduces microglial activation and behavioral deficits in a transgenic model of Parkinson's disease.
BackgroundParkinson's disease (PD) is one of the most common causes of dementia and motor deficits in the elderly. PD is characterized by the abnormal accumulation of the synaptic protein alpha-synuclein (α-syn) and degeneration of dopaminergic neurons in substantia nigra, which leads to neurodegeneration and neuroinflammation. Currently, there are no disease modifying alternatives for PD; however, targeting neuroinflammation might be a viable option for reducing motor deficits and neurodegeneration. Lenalidomide is a thalidomide derivative designed for reduced toxicity and increased immunomodulatory properties. Lenalidomide has shown protective effects in an animal model of amyotrophic lateral sclerosis, and its mechanism of action involves modulation of cytokine production and inhibition of NF-κB signaling.MethodsIn order to assess the effect of lenalidomide in an animal model of PD, mThy1-α-syn transgenic mice were treated with lenalidomide or the parent molecule thalidomide at 100 mg/kg for 4 weeks.ResultsLenalidomide reduced motor behavioral deficits and ameliorated dopaminergic fiber loss in the striatum. This protective action was accompanied by a reduction in microgliosis both in striatum and hippocampus. Central expression of pro-inflammatory cytokines was diminished in lenalidomide-treated transgenic animals, together with reduction in NF-κB activation.ConclusionThese results support the therapeutic potential of lenalidomide for reducing maladaptive neuroinflammation in PD and related neuropathologies
Experimental rat models of chronic allograft nephropathy: a review
Chronic allograft nephropathy (CAN) is the leading cause of late allograft loss after renal transplantation (RT), which continues to remain an unresolved problem. A rat model of CAN was first described in 1969 by White et al. Although the rat model of RT can be technically challenging, it is attractive because the pathogenesis of CAN is similar to that following human RT and the pathological features of CAN develop within months as compared with years in human RT. The rat model of RT is considered as a useful investigational tool in the field of experimental transplantation research. We have reviewed the literature on studies of rat RT reporting the donor and recipient strain combinations that have investigated resultant survival and histological outcomes. Several different combinations of inbred and outbred rat combinations have been reported to investigate the multiple aspects of transplantation, including acute rejection, cellular and humoral rejection mechanisms and their treatments, CAN, and potential targets for its prevention
The Study Of The Levels Of Metalloproteinases, Cytokines And Lymphocyte Activation Markers In Seminal Plasma Of Men, Depending On Fertility
The study of the concentration of metalloproteinases, pro- and anti-inflammatory cytokines, lymphocyte activation markers in seminal plasma of men with oligosymptomatic forms of chronic inflammation of the urogenital tract (CIUT), depending on the fertility rate are presented in the article.Quantitative characteristics in male sperm with different forms of pathospermia were studied for matrix metalloproteinases (MMP) -2 and MMP-9 and their inhibitors - tissue inhibitors of metalloproteinases (TIMP)-1 and TIMP-2. It was shown, that during chronic inflammation of the urogenital tract of men are shifting levels of cytokine profile, reducing the concentration of metalloproteinase-2, chemokines - fractalkine and regulated by activation, expression and secretion of normal T-cells (RANTES), sharp increase in IL-8, MCP-1 and elevation of the CD25+ / CD95+, indicating that the disturbance of apoptosis of pathological forms generative cells and their accumulation in the sperm.The ratio of immunological indices IL-2/IL-4, IL-10/IL-12 was calculated and a significant increase in the IL-10/IL-12 index was noted in the group of individuals with elevated levels of hypercapitated form of sperm, and a reduced proportion of this ratio was observed in the microsomatic morphology of sperm. Prolonged inflammation in the genital area accompanied by depletion of the local immune system, resulting in the development of infertility.Immunocorrection therapy for men with CIUT should take into account the peculiarities of changes in local immunity and be differentiated depending on the prevalence of certain pathological forms of sperm and changes in the cytokine profile of the seminal plasma
Recommended from our members
Linked CSF reduction of phosphorylated tau and IL-8 in HIV associated neurocognitive disorder.
HIV-associated neurocognitive disorder (HAND) is a common condition in both developed and developing nations, but its cause is largely unknown. Previous research has inconsistently linked Alzheimer's disease (AD), viral burden, and inflammation to the onset of HAND in HIV-infected individuals. Here we simultaneously measured cerebrospinal fluid (CSF) levels of established amyloid and tau biomarkers for AD, viral copy numbers, and six key cytokines in 41 HIV-infected individuals off combination anti-retroviral therapy (14 with HAND) who underwent detailed clinical and neuropsychological characterization, and compared their CSF patterns with those from young healthy subjects, older healthy subjects with normal cognition, and older people with AD. HAND was associated with the lowest CSF levels of phosphorylated tau (p-Tau181) after accounting for age and race. We also found very high CSF levels of the pro-inflammatory interferon gamma-induced protein 10 (IP-10/CXCL10) in HIV regardless of cognition, but elevated CSF interleukin 8 (IL-8/CXCL8) only in HIV-NC but not HAND. Eleven HIV-infected subjects underwent repeat CSF collection six months later and showed strongly correlated longitudinal changes in p-Tau181 and IL-8 levels (R = 0.841). These data suggest reduced IL-8 relative to IP-10 and reduced p-Tau181 to characterize HAND
Recommended from our members
Association of Cytomegalovirus DNA and Immunologic Markers of Cardiovascular Disease.
BackgroundPersons living with human immunodeficiency virus (HIV) (PLWH) with high cytomegalovirus (CMV)-specific interferon (IFN) γ response have increased numbers of endothelium homing receptor (CX3CR1)+-expressing cells that are associated with cardiovascular disease. The current study was performed to investigate the effect of cellular levels of CMV DNA on these markers.MethodsEighty paired peripheral blood mononuclear cell samples were collected ≥12 months apart from 40 CMV-seropositive PLWH with suppressed HIV RNA, who started antiretroviral therapy at median of 3-months of infection. The samples were assessed for CMV-specific IFN-γ response by means of enzyme-linked immunospot assay, and participants were classified as low responders (LRs) or high responders (HRs) based on IFN-γ production (≤100 or >100 spot-forming units [SFUs]/105 cells).ResultsOf the 40 participants, 26 (65%) were HRs and 14 (35%) LRs at baseline, which did not change over time or by CMV levels (median at first/second time points, 383/308 SFUs/106 cells for HRs vs 21/41 SFUs/106 for LRs). A decrease in IFN-γ over time was associated with higher CMV DNA levels (P < .01). High CMV response was also associated with increased CD28+CD27-CD4+ T cells expressing CX3CR1 (P < .001). Similarly, increased IFN-γ production was associated with increased CMV-specific CX3CR1+CD28+CD27-CD4+ and CD8+ T cells (P < .001).ConclusionsThese findings demonstrate that levels of CMV-specific IFN-γ response in PLWH are stable over time, and that HRs have increased circulating T cells expressing CX3CR1 that may put them at increased risk of cardiovascular disease and other inflammatory diseases
Lack of fractalkine receptor on macrophages impairs spontaneous recovery of ribbon synapses after moderate noise trauma in C57BL/6 mice
Inflammation as a Central Mechanism in Alzheimer\u27s Disease
Alzheimer\u27s disease (AD) is a progressive neurodegenerative disorder that is characterized by cognitive decline and the presence of two core pathologies, amyloid β plaques and neurofibrillary tangles. Over the last decade, the presence of a sustained immune response in the brain has emerged as a third core pathology in AD. The sustained activation of the brain\u27s resident macrophages (microglia) and other immune cells has been demonstrated to exacerbate both amyloid and tau pathology and may serve as a link in the pathogenesis of the disorder. In the following review, we provide an overview of inflammation in AD and a detailed coverage of a number of microglia-related signaling mechanisms that have been implicated in AD. Additional information on microglia signaling and a number of cytokines in AD are also reviewed. We also review the potential connection of risk factors for AD and how they may be related to inflammatory mechanisms
Role of the Fractalkine Receptor in CNS Autoimmune Inflammation: New Approach Utilizing a Mouse Model Expressing the Human CX3CR1
Multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous system (CNS) is the leading cause of non-traumatic neurological disability in young adults. Immune mediated destruction of myelin and oligodendrocytes is considered the primary pathology of MS, but progressive axonal loss is the major cause of neurological disability. In an effort to understand microglia function during CNS inflammation, our laboratory focuses on the fractalkine/CX3CR1 signaling as a regulator of microglia neurotoxicity in various models of neurodegeneration. Fractalkine (FKN) is a transmembrane chemokine expressed in the CNS by neurons and signals through its unique receptor CX3CR1 present in microglia. During experimental autoimmune encephalomyelitis (EAE), CX3CR1 deficiency confers exacerbated disease defined by severe inflammation and neuronal loss. The CX3CR1 human polymorphism I249/M280 present in ∼20% of the population exhibits reduced adhesion for FKN conferring defective signaling whose role in microglia function and influence on neurons during MS remains unsolved. The aim of this study is to assess the effect of weaker signaling through hCX3CR1I249/M280 during EAE. We hypothesize that dysregulated microglial responses due to impaired CX3CR1 signaling enhance neuronal/axonal damage. We generated an animal model replacing the mouse CX3CR1 locus for the hCX3CR1I249/M280 variant. Upon EAE induction, these mice exhibited exacerbated EAE correlating with severe inflammation and neuronal loss. We also observed that mice with aberrant CX3CR1 signaling are unable to produce FKN and ciliary neurotrophic factor during EAE in contrast to wild type mice. Our results provide validation of defective function of the hCX3CR1I249/M280 variant and the foundation to broaden the understanding of microglia dysfunction during neuroinflammation. © 2018 Cardona et al
- …
