5 research outputs found

    Fourier-Domain Optimization for Image Processing

    Get PDF
    Image optimization problems encompass many applications such as spectral fusion, deblurring, deconvolution, dehazing, matting, reflection removal and image interpolation, among others. With current image sizes in the order of megabytes, it is extremely expensive to run conventional algorithms such as gradient descent, making them unfavorable especially when closed-form solutions can be derived and computed efficiently. This paper explains in detail the framework for solving convex image optimization and deconvolution in the Fourier domain. We begin by explaining the mathematical background and motivating why the presented setups can be transformed and solved very efficiently in the Fourier domain. We also show how to practically use these solutions, by providing the corresponding implementations. The explanations are aimed at a broad audience with minimal knowledge of convolution and image optimization. The eager reader can jump to Section 3 for a footprint of how to solve and implement a sample optimization function, and Section 5 for the more complex cases

    Drone Shadow Tracking

    Get PDF
    Aerial videos taken by a drone not too far above the surface may contain the drone's shadow projected on the scene. This deteriorates the aesthetic quality of videos. With the presence of other shadows, shadow removal cannot be directly applied, and the shadow of the drone must be tracked. Tracking a drone's shadow in a video is, however, challenging. The varying size, shape, change of orientation and drone altitude pose difficulties. The shadow can also easily disappear over dark areas. However, a shadow has specific properties that can be leveraged, besides its geometric shape. In this paper, we incorporate knowledge of the shadow's physical properties, in the form of shadow detection masks, into a correlation-based tracking algorithm. We capture a test set of aerial videos taken with different settings and compare our results to those of a state-of-the-art tracking algorithm.Comment: 5 pages, 4 figure

    Drone Shadow Tracking

    Get PDF
    Aerial videos taken by a drone not too far above the surface may contain the drone's shadow projected on the scene. This deteriorates the aesthetic quality of videos. With the presence of other shadows, shadow removal cannot be directly applied, and the shadow of the drone must be tracked. Tracking a drone's shadow in a video is, however, challenging. The varying size, shape, change of orientation and drone altitude pose difficulties. The shadow can also easily disappear over dark areas. However, a shadow has specific properties that can be leveraged, besides its geometric shape. In this paper, we incorporate knowledge of the shadow's physical properties, in the form of shadow detection masks, into a correlation-based tracking algorithm. We capture a test set of aerial videos taken with different settings and compare our results to those of a state-of-the-art tracking algorithm
    corecore