5 research outputs found

    Discrete Signal Processing on Graphs: Frequency Analysis

    Full text link
    Signals and datasets that arise in physical and engineering applications, as well as social, genetics, biomolecular, and many other domains, are becoming increasingly larger and more complex. In contrast to traditional time and image signals, data in these domains are supported by arbitrary graphs. Signal processing on graphs extends concepts and techniques from traditional signal processing to data indexed by generic graphs. This paper studies the concepts of low and high frequencies on graphs, and low-, high-, and band-pass graph filters. In traditional signal processing, there concepts are easily defined because of a natural frequency ordering that has a physical interpretation. For signals residing on graphs, in general, there is no obvious frequency ordering. We propose a definition of total variation for graph signals that naturally leads to a frequency ordering on graphs and defines low-, high-, and band-pass graph signals and filters. We study the design of graph filters with specified frequency response, and illustrate our approach with applications to sensor malfunction detection and data classification

    Algebraic Signal Processing Theory: Cooley-Tukey Type Algorithms for DCTs and DSTs

    Full text link
    This paper presents a systematic methodology based on the algebraic theory of signal processing to classify and derive fast algorithms for linear transforms. Instead of manipulating the entries of transform matrices, our approach derives the algorithms by stepwise decomposition of the associated signal models, or polynomial algebras. This decomposition is based on two generic methods or algebraic principles that generalize the well-known Cooley-Tukey FFT and make the algorithms' derivations concise and transparent. Application to the 16 discrete cosine and sine transforms yields a large class of fast algorithms, many of which have not been found before.Comment: 31 pages, more information at http://www.ece.cmu.edu/~smar

    Algebraic Signal Processing Theory: Sampling for Infinite and Finite 1-D Space

    Full text link

    Fourier Transform for the Spatial Quincunx Lattice

    No full text
    We derive a new, two-dimensional nonseparable signal transform for computing the spectrum of spatial signals residing on a finite quincunx lattice. The derivation uses the connection between transforms and polynomial algebras, which has long been known for the discrete Fourier transform (DFT), and was extended to other transforms in recent research. We also show that the new transform can be computed with O(n 2 log(n)) operations, which puts it in the same complexity class as its separable counterparts. 1

    Fourier transform for the spatial quincunx lattice

    No full text
    corecore