880 research outputs found

    Decentralized Erasure Codes for Distributed Networked Storage

    Full text link
    We consider the problem of constructing an erasure code for storage over a network when the data sources are distributed. Specifically, we assume that there are n storage nodes with limited memory and k<n sources generating the data. We want a data collector, who can appear anywhere in the network, to query any k storage nodes and be able to retrieve the data. We introduce Decentralized Erasure Codes, which are linear codes with a specific randomized structure inspired by network coding on random bipartite graphs. We show that decentralized erasure codes are optimally sparse, and lead to reduced communication, storage and computation cost over random linear coding.Comment: to appear in IEEE Transactions on Information Theory, Special Issue: Networking and Information Theor

    Doped Fountain Coding for Minimum Delay Data Collection in Circular Networks

    Full text link
    This paper studies decentralized, Fountain and network-coding based strategies for facilitating data collection in circular wireless sensor networks, which rely on the stochastic diversity of data storage. The goal is to allow for a reduced delay collection by a data collector who accesses the network at a random position and random time. Data dissemination is performed by a set of relays which form a circular route to exchange source packets. The storage nodes within the transmission range of the route's relays linearly combine and store overheard relay transmissions using random decentralized strategies. An intelligent data collector first collects a minimum set of coded packets from a subset of storage nodes in its proximity, which might be sufficient for recovering the original packets and, by using a message-passing decoder, attempts recovering all original source packets from this set. Whenever the decoder stalls, the source packet which restarts decoding is polled/doped from its original source node. The random-walk-based analysis of the decoding/doping process furnishes the collection delay analysis with a prediction on the number of required doped packets. The number of doped packets can be surprisingly small when employed with an Ideal Soliton code degree distribution and, hence, the doping strategy may have the least collection delay when the density of source nodes is sufficiently large. Furthermore, we demonstrate that network coding makes dissemination more efficient at the expense of a larger collection delay. Not surprisingly, a circular network allows for a significantly more (analytically and otherwise) tractable strategies relative to a network whose model is a random geometric graph
    • …
    corecore