2,153 research outputs found

    The Laminar Organization of Visual Cortex: A Unified View of Development, Learning, and Grouping

    Full text link
    Why are all sensory and cognitive neocortex organized into layered circuits? How do these layers organize circuits that form functional columns in cortical maps? How do bottom-up, top-down, and horizontal interactions within the cortical layers generate adaptive behaviors. This chapter summarizes an evolving neural model which suggests how these interactions help the visual cortex to realize: (1) the binding process whereby cortex groups distributed data into coherent object representations; (2) the attentional process whereby cortex selectively processes important events; and (3) the developmental and learning processes whereby cortex shapes its circuits to match environmental constraints. It is suggested that the mechanisms which achieve property (3) imply properties of (I) and (2). New computational ideas about feedback systems suggest how neocortex develops and learns in a stable way, and why top-down attention requires converging bottom-up inputs to fully activate cortical cells, whereas perceptual groupings do not.Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-1-0409); National Science Foundation (IRI-97-20333); Office of Naval Research (N00014-95-1-0657

    Evidence accumulation in a Laplace domain decision space

    Full text link
    Evidence accumulation models of simple decision-making have long assumed that the brain estimates a scalar decision variable corresponding to the log-likelihood ratio of the two alternatives. Typical neural implementations of this algorithmic cognitive model assume that large numbers of neurons are each noisy exemplars of the scalar decision variable. Here we propose a neural implementation of the diffusion model in which many neurons construct and maintain the Laplace transform of the distance to each of the decision bounds. As in classic findings from brain regions including LIP, the firing rate of neurons coding for the Laplace transform of net accumulated evidence grows to a bound during random dot motion tasks. However, rather than noisy exemplars of a single mean value, this approach makes the novel prediction that firing rates grow to the bound exponentially, across neurons there should be a distribution of different rates. A second set of neurons records an approximate inversion of the Laplace transform, these neurons directly estimate net accumulated evidence. In analogy to time cells and place cells observed in the hippocampus and other brain regions, the neurons in this second set have receptive fields along a "decision axis." This finding is consistent with recent findings from rodent recordings. This theoretical approach places simple evidence accumulation models in the same mathematical language as recent proposals for representing time and space in cognitive models for memory.Comment: Revised for CB

    THE PSYCHOMOTOR THEORY OF HUMAN MIND

    Get PDF
    This study presents a new theory to explain the neural origins of human mind. This is the psychomotor theory. The author briefly analyzed the historical development of the mind-brain theories. The close relations between psychological and motor systems were subjected to a rather detailed analysis, using psychiatric and neurological examples. The feedback circuits between mind, brain, and body were shown to occur within the mind-brain-body triad, in normal states, and psycho-neural diseases. It was stated that psychiatric signs and symptoms are coupled with motor disturbances; neurological diseases are coupled with psychological disturbances; changes in cortico-spinal motor-system activity may influence mind-brain-body triad, and vice versa. Accordingly, a psychomotor theory was created to explain the psychomotor coupling in health and disease, stating that, not themind-brain duality or unity, but themind-brain-body triad as a functional unit may be essential in health and disease, because mind does not end in the brain, but further controls movements, in a reciprocal manner; mental and motor events share the same neural substrate, cortical, and spinalmotoneurons;mental events emerging from the motoneuronal system expressed by the human language may be closely coupled with the unity of the mind-brain-body triad. So, the psychomotor theory rejects the mind-brain duality and instead advances the unity of the psychomotor system, which will have important consequences in understanding and improving the human mind, brain, and body in health and disease

    A Neural Network Model for the Spatial and Temporal Response of Retinal Ganglion Cells

    Full text link
    This article introduces a quantitative model of early visual system function. The model is formulated to unify analyses of spatial and temporal information processing by the nervous system. Functional constraints of the model suggest mechanisms analogous to photoreceptors, bipolar cells, and retinal ganglion cells, which can be formally represented with first order differential equations. Preliminary numerical simulations and analytical results show that the same formal mechanisms can explain the behavior of both X (linear) and Y (nonlinear) retinal ganglion cell classes by simple changes in the relative width of the receptive field (RF) center and surround mechanisms. Specifically, an increase in the width of the RF center results in a change from X-like to Y-like response, in agreement with anatomical data on the relationship between α- and -cell RF profiles. Simulations of model response to various spatio-temporal input patterns replicate many of the classical properties of X and Y cells, including transient (Y) versus sustained (X) responses, null-phase responses to alternating gratings in X cells, on-off or frequency doubling responses in Y cells, and phase-independent on-off responses in Y cells at high spatial frequencies. The model's formal mechanisms may be used in other portions of the visual system and more generally in nervous system structures involved with spatio-temporal information processing

    Off-line simulation inspires insight: a neurodynamics approach to efficient robot task learning

    Get PDF
    There is currently an increasing demand for robots able to acquire the sequential organization of tasks from social learning interactions with ordinary people. Interactive learning-by-demonstration and communication is a promising research topic in current robotics research. However, the efficient acquisition of generalized task representations that allow the robot to adapt to different users and contexts is a major challenge. In this paper, we present a dynamic neural field (DNF) model that is inspired by the hypothesis that the nervous system uses the off-line re-activation of initial memory traces to incrementally incorporate new information into structured knowledge. To achieve this, the model combines fast activation-based learning to robustly represent sequential information from single task demonstrations with slower, weight-based learning during internal simulations to establish longer-term associations between neural populations representing individual subtasks. The efficiency of the learning process is tested in an assembly paradigm in which the humanoid robot ARoS learns to construct a toy vehicle from its parts. User demonstrations with different serial orders together with the correction of initial prediction errors allow the robot to acquire generalized task knowledge about possible serial orders and the longer term dependencies between subgoals in very few social learning interactions. This success is shown in a joint action scenario in which ARoS uses the newly acquired assembly plan to construct the toy together with a human partner.The work was funded by FCT - Fundacao para a Ciencia e Tecnologia, through the PhD Grants SFRH/BD/48529/2008 and SFRH/BD/41179/2007 and Project NETT: Neural Engineering Transformative Technologies, EU-FP7 ITN (nr. 289146) and the FCT-Research Center CMAT (PEst-OE/MAT/UI0013/2014)

    Neurocognitive Informatics Manifesto.

    Get PDF
    Informatics studies all aspects of the structure of natural and artificial information systems. Theoretical and abstract approaches to information have made great advances, but human information processing is still unmatched in many areas, including information management, representation and understanding. Neurocognitive informatics is a new, emerging field that should help to improve the matching of artificial and natural systems, and inspire better computational algorithms to solve problems that are still beyond the reach of machines. In this position paper examples of neurocognitive inspirations and promising directions in this area are given
    • 

    corecore