7,334 research outputs found

    Foundations of Explainable Knowledge-Enabled Systems

    Full text link
    Explainability has been an important goal since the early days of Artificial Intelligence. Several approaches for producing explanations have been developed. However, many of these approaches were tightly coupled with the capabilities of the artificial intelligence systems at the time. With the proliferation of AI-enabled systems in sometimes critical settings, there is a need for them to be explainable to end-users and decision-makers. We present a historical overview of explainable artificial intelligence systems, with a focus on knowledge-enabled systems, spanning the expert systems, cognitive assistants, semantic applications, and machine learning domains. Additionally, borrowing from the strengths of past approaches and identifying gaps needed to make explanations user- and context-focused, we propose new definitions for explanations and explainable knowledge-enabled systems.Comment: S. Chari, D. Gruen, O. Seneviratne, D. L. McGuinness, "Foundations of Explainable Knowledge-Enabled Systems". In: Ilaria Tiddi, Freddy Lecue, Pascal Hitzler (eds.), Knowledge Graphs for eXplainable AI -- Foundations, Applications and Challenges. Studies on the Semantic Web, IOS Press, Amsterdam, 2020, to appea

    Directions for Explainable Knowledge-Enabled Systems

    Full text link
    Interest in the field of Explainable Artificial Intelligence has been growing for decades and has accelerated recently. As Artificial Intelligence models have become more complex, and often more opaque, with the incorporation of complex machine learning techniques, explainability has become more critical. Recently, researchers have been investigating and tackling explainability with a user-centric focus, looking for explanations to consider trustworthiness, comprehensibility, explicit provenance, and context-awareness. In this chapter, we leverage our survey of explanation literature in Artificial Intelligence and closely related fields and use these past efforts to generate a set of explanation types that we feel reflect the expanded needs of explanation for today's artificial intelligence applications. We define each type and provide an example question that would motivate the need for this style of explanation. We believe this set of explanation types will help future system designers in their generation and prioritization of requirements and further help generate explanations that are better aligned to users' and situational needs.Comment: S. Chari, D. M. Gruen, O. Seneviratne, D. L. McGuinness, "Directions for Explainable Knowledge-Enabled Systems". In: Ilaria Tiddi, Freddy Lecue, Pascal Hitzler (eds.), Knowledge Graphs for eXplainable AI -- Foundations, Applications and Challenges. Studies on the Semantic Web, IOS Press, Amsterdam, 2020, to appea

    Explanation in Artificial Intelligence: Insights from the Social Sciences

    Full text link
    There has been a recent resurgence in the area of explainable artificial intelligence as researchers and practitioners seek to make their algorithms more understandable. Much of this research is focused on explicitly explaining decisions or actions to a human observer, and it should not be controversial to say that looking at how humans explain to each other can serve as a useful starting point for explanation in artificial intelligence. However, it is fair to say that most work in explainable artificial intelligence uses only the researchers' intuition of what constitutes a `good' explanation. There exists vast and valuable bodies of research in philosophy, psychology, and cognitive science of how people define, generate, select, evaluate, and present explanations, which argues that people employ certain cognitive biases and social expectations towards the explanation process. This paper argues that the field of explainable artificial intelligence should build on this existing research, and reviews relevant papers from philosophy, cognitive psychology/science, and social psychology, which study these topics. It draws out some important findings, and discusses ways that these can be infused with work on explainable artificial intelligence

    Explanation in Human-AI Systems: A Literature Meta-Review, Synopsis of Key Ideas and Publications, and Bibliography for Explainable AI

    Full text link
    This is an integrative review that address the question, "What makes for a good explanation?" with reference to AI systems. Pertinent literatures are vast. Thus, this review is necessarily selective. That said, most of the key concepts and issues are expressed in this Report. The Report encapsulates the history of computer science efforts to create systems that explain and instruct (intelligent tutoring systems and expert systems). The Report expresses the explainability issues and challenges in modern AI, and presents capsule views of the leading psychological theories of explanation. Certain articles stand out by virtue of their particular relevance to XAI, and their methods, results, and key points are highlighted. It is recommended that AI/XAI researchers be encouraged to include in their research reports fuller details on their empirical or experimental methods, in the fashion of experimental psychology research reports: details on Participants, Instructions, Procedures, Tasks, Dependent Variables (operational definitions of the measures and metrics), Independent Variables (conditions), and Control Conditions

    Explanation Ontology: A Model of Explanations for User-Centered AI

    Full text link
    Explainability has been a goal for Artificial Intelligence (AI) systems since their conception, with the need for explainability growing as more complex AI models are increasingly used in critical, high-stakes settings such as healthcare. Explanations have often added to an AI system in a non-principled, post-hoc manner. With greater adoption of these systems and emphasis on user-centric explainability, there is a need for a structured representation that treats explainability as a primary consideration, mapping end user needs to specific explanation types and the system's AI capabilities. We design an explanation ontology to model both the role of explanations, accounting for the system and user attributes in the process, and the range of different literature-derived explanation types. We indicate how the ontology can support user requirements for explanations in the domain of healthcare. We evaluate our ontology with a set of competency questions geared towards a system designer who might use our ontology to decide which explanation types to include, given a combination of users' needs and a system's capabilities, both in system design settings and in real-time operations. Through the use of this ontology, system designers will be able to make informed choices on which explanations AI systems can and should provide.Comment: 16 pages (but 1 reference over on arxiv), 5 tables, 3 code listings, 1 figur

    Hows and Whys of Artificial Intelligence for Public Sector Decisions: Explanation and Evaluation

    Full text link
    Evaluation has always been a key challenge in the development of artificial intelligence (AI) based software, due to the technical complexity of the software artifact and, often, its embedding in complex sociotechnical processes. Recent advances in machine learning (ML) enabled by deep neural networks has exacerbated the challenge of evaluating such software due to the opaque nature of these ML-based artifacts. A key related issue is the (in)ability of such systems to generate useful explanations of their outputs, and we argue that the explanation and evaluation problems are closely linked. The paper models the elements of a ML-based AI system in the context of public sector decision (PSD) applications involving both artificial and human intelligence, and maps these elements against issues in both evaluation and explanation, showing how the two are related. We consider a number of common PSD application patterns in the light of our model, and identify a set of key issues connected to explanation and evaluation in each case. Finally, we propose multiple strategies to promote wider adoption of AI/ML technologies in PSD, where each is distinguished by a focus on different elements of our model, allowing PSD policy makers to adopt an approach that best fits their context and concerns.Comment: Presented at AAAI FSS-18: Artificial Intelligence in Government and Public Sector, Arlington, Virginia, USA; corrected typos in this versio

    How the Experts Do It: Assessing and Explaining Agent Behaviors in Real-Time Strategy Games

    Full text link
    How should an AI-based explanation system explain an agent's complex behavior to ordinary end users who have no background in AI? Answering this question is an active research area, for if an AI-based explanation system could effectively explain intelligent agents' behavior, it could enable the end users to understand, assess, and appropriately trust (or distrust) the agents attempting to help them. To provide insights into this question, we turned to human expert explainers in the real-time strategy domain, "shoutcaster", to understand (1) how they foraged in an evolving strategy game in real time, (2) how they assessed the players' behaviors, and (3) how they constructed pertinent and timely explanations out of their insights and delivered them to their audience. The results provided insights into shoutcasters' foraging strategies for gleaning information necessary to assess and explain the players; a characterization of the types of implicit questions shoutcasters answered; and implications for creating explanations by using the patternsComment: 12 pages, 11 figures, submitted to CHI 201

    Contrastive Fairness in Machine Learning

    Full text link
    Was it fair that Harry was hired but not Barry? Was it fair that Pam was fired instead of Sam? How can one ensure fairness when an intelligent algorithm takes these decisions instead of a human? How can one ensure that the decisions were taken based on merit and not on protected attributes like race or sex? These are the questions that must be answered now that many decisions in real life can be made through machine learning. However research in fairness of algorithms has focused on the counterfactual questions "what if?" or "why?", whereas in real life most subjective questions of consequence are contrastive: "why this but not that?". We introduce concepts and mathematical tools using causal inference to address contrastive fairness in algorithmic decision-making with illustrative examples

    Toward Personalized XAI: A Case Study in Intelligent Tutoring Systems

    Full text link
    Our research is a step toward ascertaining the need for personalization, in XAI, and we do so in the context of investigating the value of explanations of AI-driven hints and feedback are useful in Intelligent Tutoring Systems (ITS). We added an explanation functionality for the adaptive hints provided by the Adaptive CSP (ACSP) applet, an interactive simulation that helps students learn an algorithm for constraint satisfaction problems by providing AI-driven hints adapted to their predicted level of learning. We present the design of the explanation functionality and the results of a controlled study to evaluate its impact on students' learning and perception of the ACPS hints. The study includes an analysis of how these outcomes are modulated by several user characteristics such as personality traits and cognitive abilities, to asses if explanations should be personalized to these characteristics. Our results indicate that providing explanations increase students' trust in the ACPS hints, perceived usefulness of the hints, and intention to use them again. In addition, we show that students' access of the explanation and learning gains are modulated by user characteristics, providing insights toward designing personalized Explainable AI (XAI) for ITS

    "Why Should I Trust Interactive Learners?" Explaining Interactive Queries of Classifiers to Users

    Full text link
    Although interactive learning puts the user into the loop, the learner remains mostly a black box for the user. Understanding the reasons behind queries and predictions is important when assessing how the learner works and, in turn, trust. Consequently, we propose the novel framework of explanatory interactive learning: in each step, the learner explains its interactive query to the user, and she queries of any active classifier for visualizing explanations of the corresponding predictions. We demonstrate that this can boost the predictive and explanatory powers of and the trust into the learned model, using text (e.g. SVMs) and image classification (e.g. neural networks) experiments as well as a user study.Comment: Submitted to NIPS 201
    • …
    corecore