4,730 research outputs found

    Object tracking and detection after occlusion via numerical hybrid local and global mode-seeking

    Get PDF
    Given an object model and a black-box measure of similarity between the model and candidate targets, we consider visual object tracking as a numerical optimization problem. During normal tracking conditions when the object is visible from frame to frame, local optimization is used to track the local mode of the similarity measure in a parameter space of translation, rotation and scale. However, when the object becomes partially or totally occluded, such local tracking is prone to failure, especially when common prediction techniques like the Kalman filter do not provide a good estimate of object parameters in future frames. To recover from these inevitable tracking failures, we consider object detection as a global optimization problem and solve it via Adaptive Simulated Annealing (ASA), a method that avoids becoming trapped at local modes and is much faster than exhaustive search. As a Monte Carlo approach, ASA stochastically samples the parameter space, in contrast to local deterministic search. We apply cluster analysis on the sampled parameter space to redetect the object and renew the local tracker. Our numerical hybrid local and global mode-seeking tracker is validated on challenging airborne videos with heavy occlusion and large camera motions. Our approach outperforms state-of-the-art trackers on the VIVID benchmark datasets. 1

    Gravity optimised particle filter for hand tracking

    Get PDF
    This paper presents a gravity optimised particle filter (GOPF) where the magnitude of the gravitational force for every particle is proportional to its weight. GOPF attracts nearby particles and replicates new particles as if moving the particles towards the peak of the likelihood distribution, improving the sampling efficiency. GOPF is incorporated into a technique for hand features tracking. A fast approach to hand features detection and labelling using convexity defects is also presented. Experimental results show that GOPF outperforms the standard particle filter and its variants, as well as state-of-the-art CamShift guided particle filter using a significantly reduced number of particles

    Automatic vehicle detection and tracking in aerial video

    Get PDF
    This thesis is concerned with the challenging tasks of automatic and real-time vehicle detection and tracking from aerial video. The aim of this thesis is to build an automatic system that can accurately localise any vehicles that appear in aerial video frames and track the target vehicles with trackers. Vehicle detection and tracking have many applications and this has been an active area of research during recent years; however, it is still a challenge to deal with certain realistic environments. This thesis develops vehicle detection and tracking algorithms which enhance the robustness of detection and tracking beyond the existing approaches. The basis of the vehicle detection system proposed in this thesis has different object categorisation approaches, with colour and texture features in both point and area template forms. The thesis also proposes a novel Self-Learning Tracking and Detection approach, which is an extension to the existing Tracking Learning Detection (TLD) algorithm. There are a number of challenges in vehicle detection and tracking. The most difficult challenge of detection is distinguishing and clustering the target vehicle from the background objects and noises. Under certain conditions, the images captured from Unmanned Aerial Vehicles (UAVs) are also blurred; for example, turbulence may make the vehicle shake during flight. This thesis tackles these challenges by applying integrated multiple feature descriptors for real-time processing. In this thesis, three vehicle detection approaches are proposed: the HSV-GLCM feature approach, the ISM-SIFT feature approach and the FAST-HoG approach. The general vehicle detection approaches used have highly flexible implicit shape representations. They are based on training samples in both positive and negative sets and use updated classifiers to distinguish the targets. It has been found that the detection results attained by using HSV-GLCM texture features can be affected by blurring problems; the proposed detection algorithms can further segment the edges of the vehicles from the background. Using the point descriptor feature can solve the blurring problem, however, the large amount of information contained in point descriptors can lead to processing times that are too long for real-time applications. So the FAST-HoG approach combining the point feature and the shape feature is proposed. This new approach is able to speed up the process that attains the real-time performance. Finally, a detection approach using HoG with the FAST feature is also proposed. The HoG approach is widely used in object recognition, as it has a strong ability to represent the shape vector of the object. However, the original HoG feature is sensitive to the orientation of the target; this method improves the algorithm by inserting the direction vectors of the targets. For the tracking process, a novel tracking approach was proposed, an extension of the TLD algorithm, in order to track multiple targets. The extended approach upgrades the original system, which can only track a single target, which must be selected before the detection and tracking process. The greatest challenge to vehicle tracking is long-term tracking. The target object can change its appearance during the process and illumination and scale changes can also occur. The original TLD feature assumed that tracking can make errors during the tracking process, and the accumulation of these errors could cause tracking failure, so the original TLD proposed using a learning approach in between the tracking and the detection by adding a pair of inspectors (positive and negative) to constantly estimate errors. This thesis extends the TLD approach with a new detection method in order to achieve multiple-target tracking. A Forward and Backward Tracking approach has been proposed to eliminate tracking errors and other problems such as occlusion. The main purpose of the proposed tracking system is to learn the features of the targets during tracking and re-train the detection classifier for further processes. This thesis puts particular emphasis on vehicle detection and tracking in different extreme scenarios such as crowed highway vehicle detection, blurred images and changes in the appearance of the targets. Compared with currently existing detection and tracking approaches, the proposed approaches demonstrate a robust increase in accuracy in each scenario

    Self Correcting Tracking of Moving Objects in Video

    Get PDF
    Apparatus, methods, systems and devices for identifying and tracking a human hand in a video. The steps for identifying the hand includes detecting parallel lines (bars), detecting curved fingertips (curves), grouping the detected parallel lines and curved fingertips according to a parallel line decision tree and a curved fignertip decision tree, respectively, and merging the parallel line group and the curved fingertip group to identify candidate hands

    Action Recognition Using Particle Flow Fields

    Get PDF
    In recent years, research in human action recognition has advanced on multiple fronts to address various types of actions including simple, isolated actions in staged data (e.g., KTH dataset), complex actions (e.g., Hollywood dataset), and naturally occurring actions in surveillance videos (e.g, VIRAT dataset). Several techniques including those based on gradient, flow, and interest-points, have been developed for their recognition. Most perform very well in standard action recognition datasets, but fail to produce similar results in more complex, large-scale datasets. Action recognition on large categories of unconstrained videos taken from the web is a very challenging problem compared to datasets like KTH (six actions), IXMAS (thirteen actions), and Weizmann (ten actions). Challenges such as camera motion, different viewpoints, huge interclass variations, cluttered background, occlusions, bad illumination conditions, and poor quality of web videos cause the majority of the state-of-the-art action recognition approaches to fail. An increasing number of categories and the inclusion of actions with high confusion also increase the difficulty of the problem. The approach taken to solve this action recognition problem depends primarily on the dataset and the possibility of detecting and tracking the object of interest. In this dissertation, a new method for video representation is proposed and three new approaches to perform action recognition in different scenarios using varying prerequisites are presented. The prerequisites have decreasing levels of difficulty to obtain: 1) Scenario requires human detection and trackiii ing to perform action recognition; 2) Scenario requires background and foreground separation to perform action recognition; and 3) No pre-processing is required for action recognition. First, we propose a new video representation using optical flow and particle advection. The proposed “Particle Flow Field” (PFF) representation has been used to generate motion descriptors and tested in a Bag of Video Words (BoVW) framework on the KTH dataset. We show that particle flow fields has better performance than other low-level video representations, such as 2D-Gradients, 3D-Gradients and optical flow. Second, we analyze the performance of the state-of-the-art technique based on the histogram of oriented 3D-Gradients in spatio temporal volumes, where human detection and tracking are required. We use the proposed particle flow field and show superior results compared to the histogram of oriented 3D-Gradients in spatio temporal volumes. The proposed method, when used for human action recognition, just needs human detection and does not necessarily require human tracking and figure centric bounding boxes. It has been tested on KTH (six actions), Weizmann (ten actions), and IXMAS (thirteen actions, 4 different views) action recognition datasets. Third, we propose using the scene context information obtained from moving and stationary pixels in the key frames, in conjunction with motion descriptors obtained using Bag of Words framework, to solve the action recognition problem on a large (50 actions) dataset with videos from the web. We perform a combination of early and late fusion on multiple features to handle the huge number of categories. We demonstrate that scene context is a very important feature for performing action recognition on huge datasets. iv The proposed method needs separation of moving and stationary pixels, and does not require any kind of video stabilization, person detection, or tracking and pruning of features. Our approach obtains good performance on a huge number of action categories. It has been tested on the UCF50 dataset with 50 action categories, which is an extension of the UCF YouTube Action (UCF11) Dataset containing 11 action categories. We also tested our approach on the KTH and HMDB51 datasets for comparison. Finally, we focus on solving practice problems in representing actions by bag of spatio temporal features (i.e. cuboids), which has proven valuable for action recognition in recent literature. We observed that the visual vocabulary based (bag of video words) method suffers from many drawbacks in practice, such as: (i) It requires an intensive training stage to obtain good performance; (ii) it is sensitive to the vocabulary size; (iii) it is unable to cope with incremental recognition problems; (iv) it is unable to recognize simultaneous multiple actions; (v) it is unable to perform recognition frame by frame. In order to overcome these drawbacks, we propose a framework to index large scale motion features using Sphere/Rectangle-tree (SR-tree) for incremental action detection and recognition. The recognition comprises of the following two steps: 1) recognizing the local features by non-parametric nearest neighbor (NN), and 2) using a simple voting strategy to label the action. It can also provide localization of the action. Since it does not require feature quantization it can efficiently grow the feature-tree by adding features from new training actions or categories. Our method provides an effective way for practical incremental action recognition. Furthermore, it can handle large scale datasets because the SR-tree is a disk-based v data structure. We tested our approach on two publicly available datasets, the KTH dataset and the IXMAS multi-view dataset, and achieved promising results

    Audiovisual Saliency Prediction in Uncategorized Video Sequences based on Audio-Video Correlation

    Full text link
    Substantial research has been done in saliency modeling to develop intelligent machines that can perceive and interpret their surroundings. But existing models treat videos as merely image sequences excluding any audio information, unable to cope with inherently varying content. Based on the hypothesis that an audiovisual saliency model will be an improvement over traditional saliency models for natural uncategorized videos, this work aims to provide a generic audio/video saliency model augmenting a visual saliency map with an audio saliency map computed by synchronizing low-level audio and visual features. The proposed model was evaluated using different criteria against eye fixations data for a publicly available DIEM video dataset. The results show that the model outperformed two state-of-the-art visual saliency models.Comment: 9 pages, 2 figures, 4 table
    corecore