27,436 research outputs found

    AI for Classic Video Games using Reinforcement Learning

    Get PDF
    Deep reinforcement learning is a technique to teach machines tasks based on trial and error experiences in the way humans learn. In this paper, some preliminary research is done to understand how reinforcement learning and deep learning techniques can be combined to train an agent to play Archon, a classic video game. We compare two methods to estimate a Q function, the function used to compute the best action to take at each point in the game. In the first approach, we used a Q table to store the states and weights of the corresponding actions. In our experiments, this method converged very slowly. Our second approach was similar to that of [1]: We used a convolutional neural network (CNN) to determine a Q function. This deep neural network model successfully learnt to control the Archon player using keyboard event that it generated. We observed that the second approaches Q function converged faster than the first. For the latter method, the neural net was trained only using prediodic screenshots taken while it was playing. Experiments were conducted on a machine that did not have a GPU, so our training was slower as compared to [1]

    Playing Atari with Deep Reinforcement Learning

    Full text link
    We present the first deep learning model to successfully learn control policies directly from high-dimensional sensory input using reinforcement learning. The model is a convolutional neural network, trained with a variant of Q-learning, whose input is raw pixels and whose output is a value function estimating future rewards. We apply our method to seven Atari 2600 games from the Arcade Learning Environment, with no adjustment of the architecture or learning algorithm. We find that it outperforms all previous approaches on six of the games and surpasses a human expert on three of them.Comment: NIPS Deep Learning Workshop 201

    A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised Learning

    Full text link
    This paper takes a step towards temporal reasoning in a dynamically changing video, not in the pixel space that constitutes its frames, but in a latent space that describes the non-linear dynamics of the objects in its world. We introduce the Kalman variational auto-encoder, a framework for unsupervised learning of sequential data that disentangles two latent representations: an object's representation, coming from a recognition model, and a latent state describing its dynamics. As a result, the evolution of the world can be imagined and missing data imputed, both without the need to generate high dimensional frames at each time step. The model is trained end-to-end on videos of a variety of simulated physical systems, and outperforms competing methods in generative and missing data imputation tasks.Comment: NIPS 201

    Minimax Iterative Dynamic Game: Application to Nonlinear Robot Control Tasks

    Full text link
    Multistage decision policies provide useful control strategies in high-dimensional state spaces, particularly in complex control tasks. However, they exhibit weak performance guarantees in the presence of disturbance, model mismatch, or model uncertainties. This brittleness limits their use in high-risk scenarios. We present how to quantify the sensitivity of such policies in order to inform of their robustness capacity. We also propose a minimax iterative dynamic game framework for designing robust policies in the presence of disturbance/uncertainties. We test the quantification hypothesis on a carefully designed deep neural network policy; we then pose a minimax iterative dynamic game (iDG) framework for improving policy robustness in the presence of adversarial disturbances. We evaluate our iDG framework on a mecanum-wheeled robot, whose goal is to find a ocally robust optimal multistage policy that achieve a given goal-reaching task. The algorithm is simple and adaptable for designing meta-learning/deep policies that are robust against disturbances, model mismatch, or model uncertainties, up to a disturbance bound. Videos of the results are on the author's website, http://ecs.utdallas.edu/~opo140030/iros18/iros2018.html, while the codes for reproducing our experiments are on github, https://github.com/lakehanne/youbot/tree/rilqg. A self-contained environment for reproducing our results is on docker, https://hub.docker.com/r/lakehanne/youbotbuntu14/Comment: 2018 International Conference on Intelligent Robots and System
    • …
    corecore