150,316 research outputs found

    Markovian Nash equilibrium in financial markets with asymmetric information and related forward-backward systems

    Get PDF
    This paper develops a new methodology for studying continuous-time Nash equilibrium in a financial market with asymmetrically informed agents. This approach allows us to lift the restriction of risk neutrality imposed on market makers by the current literature. It turns out that, when the market makers are risk averse, the optimal strategies of the agents are solutions of a forward-backward system of partial and stochastic differential equations. In particular, the price set by the market makers solves a nonstandard "quadratic" backward stochastic differential equation. The main result of the paper is the existence of a Markovian solution to this forward-backward system on an arbitrary time interval, which is obtained via a fixed-point argument on the space of absolutely continuous distribution functions. Moreover, the equilibrium obtained in this paper is able to explain several stylized facts which are not captured by the current asymmetric information models.Comment: Published at http://dx.doi.org/10.1214/15-AAP1138 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Computation Alignment: Capacity Approximation without Noise Accumulation

    Full text link
    Consider several source nodes communicating across a wireless network to a destination node with the help of several layers of relay nodes. Recent work by Avestimehr et al. has approximated the capacity of this network up to an additive gap. The communication scheme achieving this capacity approximation is based on compress-and-forward, resulting in noise accumulation as the messages traverse the network. As a consequence, the approximation gap increases linearly with the network depth. This paper develops a computation alignment strategy that can approach the capacity of a class of layered, time-varying wireless relay networks up to an approximation gap that is independent of the network depth. This strategy is based on the compute-and-forward framework, which enables relays to decode deterministic functions of the transmitted messages. Alone, compute-and-forward is insufficient to approach the capacity as it incurs a penalty for approximating the wireless channel with complex-valued coefficients by a channel with integer coefficients. Here, this penalty is circumvented by carefully matching channel realizations across time slots to create integer-valued effective channels that are well-suited to compute-and-forward. Unlike prior constant gap results, the approximation gap obtained in this paper also depends closely on the fading statistics, which are assumed to be i.i.d. Rayleigh.Comment: 36 pages, to appear in IEEE Transactions on Information Theor

    Decision Problems for Petri Nets with Names

    Full text link
    We prove several decidability and undecidability results for nu-PN, an extension of P/T nets with pure name creation and name management. We give a simple proof of undecidability of reachability, by reducing reachability in nets with inhibitor arcs to it. Thus, the expressive power of nu-PN strictly surpasses that of P/T nets. We prove that nu-PN are Well Structured Transition Systems. In particular, we obtain decidability of coverability and termination, so that the expressive power of Turing machines is not reached. Moreover, they are strictly Well Structured, so that the boundedness problem is also decidable. We consider two properties, width-boundedness and depth-boundedness, that factorize boundedness. Width-boundedness has already been proven to be decidable. We prove here undecidability of depth-boundedness. Finally, we obtain Ackermann-hardness results for all our decidable decision problems.Comment: 20 pages, 7 figure

    Tracking Stopping Times Through Noisy Observations

    Full text link
    A novel quickest detection setting is proposed which is a generalization of the well-known Bayesian change-point detection model. Suppose \{(X_i,Y_i)\}_{i\geq 1} is a sequence of pairs of random variables, and that S is a stopping time with respect to \{X_i\}_{i\geq 1}. The problem is to find a stopping time T with respect to \{Y_i\}_{i\geq 1} that optimally tracks S, in the sense that T minimizes the expected reaction delay E(T-S)^+, while keeping the false-alarm probability P(T<S) below a given threshold \alpha \in [0,1]. This problem formulation applies in several areas, such as in communication, detection, forecasting, and quality control. Our results relate to the situation where the X_i's and Y_i's take values in finite alphabets and where S is bounded by some positive integer \kappa. By using elementary methods based on the analysis of the tree structure of stopping times, we exhibit an algorithm that computes the optimal average reaction delays for all \alpha \in [0,1], and constructs the associated optimal stopping times T. Under certain conditions on \{(X_i,Y_i)\}_{i\geq 1} and S, the algorithm running time is polynomial in \kappa.Comment: 19 pages, 4 figures, to appear in IEEE Transactions on Information Theor

    Universal Estimation of Directed Information

    Full text link
    Four estimators of the directed information rate between a pair of jointly stationary ergodic finite-alphabet processes are proposed, based on universal probability assignments. The first one is a Shannon--McMillan--Breiman type estimator, similar to those used by Verd\'u (2005) and Cai, Kulkarni, and Verd\'u (2006) for estimation of other information measures. We show the almost sure and L1L_1 convergence properties of the estimator for any underlying universal probability assignment. The other three estimators map universal probability assignments to different functionals, each exhibiting relative merits such as smoothness, nonnegativity, and boundedness. We establish the consistency of these estimators in almost sure and L1L_1 senses, and derive near-optimal rates of convergence in the minimax sense under mild conditions. These estimators carry over directly to estimating other information measures of stationary ergodic finite-alphabet processes, such as entropy rate and mutual information rate, with near-optimal performance and provide alternatives to classical approaches in the existing literature. Guided by these theoretical results, the proposed estimators are implemented using the context-tree weighting algorithm as the universal probability assignment. Experiments on synthetic and real data are presented, demonstrating the potential of the proposed schemes in practice and the utility of directed information estimation in detecting and measuring causal influence and delay.Comment: 23 pages, 10 figures, to appear in IEEE Transactions on Information Theor

    Lower Bounds for Symbolic Computation on Graphs: Strongly Connected Components, Liveness, Safety, and Diameter

    Full text link
    A model of computation that is widely used in the formal analysis of reactive systems is symbolic algorithms. In this model the access to the input graph is restricted to consist of symbolic operations, which are expensive in comparison to the standard RAM operations. We give lower bounds on the number of symbolic operations for basic graph problems such as the computation of the strongly connected components and of the approximate diameter as well as for fundamental problems in model checking such as safety, liveness, and co-liveness. Our lower bounds are linear in the number of vertices of the graph, even for constant-diameter graphs. For none of these problems lower bounds on the number of symbolic operations were known before. The lower bounds show an interesting separation of these problems from the reachability problem, which can be solved with O(D)O(D) symbolic operations, where DD is the diameter of the graph. Additionally we present an approximation algorithm for the graph diameter which requires O~(nD)\tilde{O}(n \sqrt{D}) symbolic steps to achieve a (1+ϵ)(1+\epsilon)-approximation for any constant ϵ>0\epsilon > 0. This compares to O(n⋅D)O(n \cdot D) symbolic steps for the (naive) exact algorithm and O(D)O(D) symbolic steps for a 2-approximation. Finally we also give a refined analysis of the strongly connected components algorithms of Gentilini et al., showing that it uses an optimal number of symbolic steps that is proportional to the sum of the diameters of the strongly connected components
    • …
    corecore