586,215 research outputs found
Inverse Optimization with Noisy Data
Inverse optimization refers to the inference of unknown parameters of an
optimization problem based on knowledge of its optimal solutions. This paper
considers inverse optimization in the setting where measurements of the optimal
solutions of a convex optimization problem are corrupted by noise. We first
provide a formulation for inverse optimization and prove it to be NP-hard. In
contrast to existing methods, we show that the parameter estimates produced by
our formulation are statistically consistent. Our approach involves combining a
new duality-based reformulation for bilevel programs with a regularization
scheme that smooths discontinuities in the formulation. Using epi-convergence
theory, we show the regularization parameter can be adjusted to approximate the
original inverse optimization problem to arbitrary accuracy, which we use to
prove our consistency results. Next, we propose two solution algorithms based
on our duality-based formulation. The first is an enumeration algorithm that is
applicable to settings where the dimensionality of the parameter space is
modest, and the second is a semiparametric approach that combines nonparametric
statistics with a modified version of our formulation. These numerical
algorithms are shown to maintain the statistical consistency of the underlying
formulation. Lastly, using both synthetic and real data, we demonstrate that
our approach performs competitively when compared with existing heuristics
Non-negative mixed finite element formulations for a tensorial diffusion equation
We consider the tensorial diffusion equation, and address the discrete
maximum-minimum principle of mixed finite element formulations. In particular,
we address non-negative solutions (which is a special case of the
maximum-minimum principle) of mixed finite element formulations. The discrete
maximum-minimum principle is the discrete version of the maximum-minimum
principle.
In this paper we present two non-negative mixed finite element formulations
for tensorial diffusion equations based on constrained optimization techniques
(in particular, quadratic programming). These proposed mixed formulations
produce non-negative numerical solutions on arbitrary meshes for low-order
(i.e., linear, bilinear and trilinear) finite elements. The first formulation
is based on the Raviart-Thomas spaces, and is obtained by adding a non-negative
constraint to the variational statement of the Raviart-Thomas formulation. The
second non-negative formulation based on the variational multiscale
formulation.
For the former formulation we comment on the affect of adding the
non-negative constraint on the local mass balance property of the
Raviart-Thomas formulation. We also study the performance of the active set
strategy for solving the resulting constrained optimization problems. The
overall performance of the proposed formulation is illustrated on three
canonical test problems.Comment: 40 pages using amsart style file, and 15 figure
Stochastic MPC Design for a Two-Component Granulation Process
We address the issue of control of a stochastic two-component granulation
process in pharmaceutical applications through using Stochastic Model
Predictive Control (SMPC) and model reduction to obtain the desired particle
distribution. We first use the method of moments to reduce the governing
integro-differential equation down to a nonlinear ordinary differential
equation (ODE). This reduced-order model is employed in the SMPC formulation.
The probabilistic constraints in this formulation keep the variance of
particles' drug concentration in an admissible range. To solve the resulting
stochastic optimization problem, we first employ polynomial chaos expansion to
obtain the Probability Distribution Function (PDF) of the future state
variables using the uncertain variables' distributions. As a result, the
original stochastic optimization problem for a particulate system is converted
to a deterministic dynamic optimization. This approximation lessens the
computation burden of the controller and makes its real time application
possible.Comment: American control Conference, May, 201
- …
