281,382 research outputs found

    High-resolution simulations of planetesimal formation in turbulent protoplanetary discs

    Full text link
    We present high-resolution computer simulations of dust dynamics and planetesimal formation in turbulence generated by the magnetorotational instability. We show that the turbulent viscosity associated with magnetorotational turbulence in a non-stratified shearing box increases when going from 256^3 to 512^3 grid points in the presence of a weak imposed magnetic field, yielding a turbulent viscosity of α0.003\alpha\approx0.003 at high resolution. Particles representing approximately meter-sized boulders concentrate in large-scale high-pressure regions in the simulation box. The appearance of zonal flows and particle concentration in pressure bumps is relatively similar at moderate (256^3) and high (512^3) resolution. In the moderate-resolution simulation we activate particle self-gravity at a time when there is little particle concentration, in contrast with previous simulations where particle self-gravity was activated during a concentration event. We observe that bound clumps form over the next ten orbits, with initial birth masses of a few times the dwarf planet Ceres. At high resolution we activate self-gravity during a particle concentration event, leading to a burst of planetesimal formation, with clump masses ranging from a significant fraction of to several times the mass of Ceres. We present a new domain decomposition algorithm for particle-mesh schemes. Particles are spread evenly among the processors and the local gas velocity field and assigned drag forces are exchanged between a domain-decomposed mesh and discrete blocks of particles. We obtain good load balancing on up to 4096 cores even in simulations where particles sediment to the mid-plane and concentrate in pressure bumps.Comment: Accepted for publication in Astronomy & Astrophysics, with some changes in response to referee repor

    Structure formation in binary colloids

    Full text link
    A theoretical study of the structure formation observed very recently [Phys. Rev. Lett. 90, 128303 (2003)] in binary colloids is presented. In our model solely the dipole-dipole interaction of the particles is considered, electrohidrodynamic effects are excluded. Based on molecular dynamics simulations and analytic calculations we show that the total concentration of the particles, the relative concentration and the relative dipole moment of the components determine the structure of the colloid. At low concentrations the kinetic aggregation of particles results in fractal structures which show a crossover behavior when increasing the concentration. At high concentration various lattice structures are obtained in a good agreement with experiments.Comment: revtex, 4 pages, figures available from authors due to size problem

    Photometric and dynamic evolution of an isolated disc galaxy simulation

    Full text link
    We present a detailed analysis of the evolution of a simulated isolated disc galaxy. The simulation includes stars, gas, star formation and simple chemical yields. Stellar particles are split in two populations: the old one is present at the beginning of the simulation and is calibrated according to various ages and metallicities; the new population borns in the course of the simulation and inherits the metallicity of the gas particles. The results have been calibrated in four wavebands with the spectro-photometric evolutionary model GISSEL2000 (Bruzual & Charlot 1993). Dust extinction has also been taken into account. A rest-frame morphological and bidimensional photometric analysis has been performed on simulated images, with the same tools as for observations. The effects of the stellar bar formation and the linked star formation episode on the global properties of the galaxy (mass and luminosity distribution, colours, isophotal radii) have been analysed. In particular, we have disentangled the effects of stellar evolution from dynamic evolution to explain the cause of the isophotal radii variations. We show that the dynamic properties (e.g. mass) of the area enclosed by any isophotal radius depends on the waveband and on the level of star formation activity. It is also shown that the bar isophotes remain thinner than mass isodensities a long time (> 0.7 Gyr) after the maximum of star formation rate. We show that bar ellipticity is very wavelength dependent as suggested by real observations. Effects of dust extinction on photometric and morphological measurements are systematically quantified.Comment: 14 pages, 16 figures (13 in eps, 3 in jpg format). Accepted for publication in A&

    Fragmentation and Evolution of Molecular Clouds. II: The Effect of Dust Heating

    Get PDF
    We investigate the effect of heating by luminosity sources in a simulation of clustered star formation. Our heating method involves a simplified continuum radiative transfer method that calculates the dust temperature. The gas temperature is set by the dust temperature. We present the results of four simulations, two simulations assume an isothermal equation of state and the two other simulations include dust heating. We investigate two mass regimes, i.e., 84 Msun and 671 Msun, using these two different energetics algorithms. The mass functions for the isothermal simulations and simulations which include dust heating are drastically different. In the isothermal simulation, we do not form any objects with masses above 1 Msun. However, the simulation with dust heating, while missing some of the low-mass objects, forms high-mass objects (~20 Msun) which have a distribution similar to the Salpeter IMF. The envelope density profiles around the stars formed in our simulation match observed values around isolated, low-mass star-forming cores. We find the accretion rates to be highly variable and, on average, increasing with final stellar mass. By including radiative feedback from stars in a cluster-scale simulation, we have determined that it is a very important effect which drastically affects the mass function and yields important insights into the formation of massive stars.Comment: 19 pages, 28 figures. See http://www.astro.phy.ulaval.ca/staff/hugo/dust/ms_dust.big.pdf for high resolution version of documen

    Machine learning cosmological structure formation

    Get PDF
    We train a machine learning algorithm to learn cosmological structure formation from N-body simulations. The algorithm infers the relationship between the initial conditions and the final dark matter haloes, without the need to introduce approximate halo collapse models. We gain insights into the physics driving halo formation by evaluating the predictive performance of the algorithm when provided with different types of information about the local environment around dark matter particles. The algorithm learns to predict whether or not dark matter particles will end up in haloes of a given mass range, based on spherical overdensities. We show that the resulting predictions match those of spherical collapse approximations such as extended Press-Schechter theory. Additional information on the shape of the local gravitational potential is not able to improve halo collapse predictions; the linear density field contains sufficient information for the algorithm to also reproduce ellipsoidal collapse predictions based on the Sheth-Tormen model. We investigate the algorithm's performance in terms of halo mass and radial position and perform blind analyses on independent initial conditions realisations to demonstrate the generality of our results.Comment: 10 pages, 7 figures. Minor changes to match version published in MNRAS. Accepted on 22/06/201

    Large-scale structure formation for power spectra with broken scale invariance

    Get PDF
    We have simulated the formation of large-scale structure arising from COBE-normalized spectra computed by convolving a primordial double-inflation perturbation spectrum with the CDM transfer function. Due to the broken scale invariance ('BSI') characterizing the primordial perturbation spectrum, this model has less small-scale power than the (COBE-normalized) standard CDM model. The particle-mesh code (with 5123512^3 cells and 2563256^3 particles) includes a model for thermodynamic evolution of baryons in addition to the usual gravitational dynamics of dark matter. It provides an estimate of the local gas temperature. In particular, our galaxy-finding procedure seeks peaks in the distribution of gas that has cooled. It exploits the fact that ``cold" particles trace visible matter better than average and thus provides a natural biasing mechanism. The basic picture of large-scale structure formation in the BSI model is the familiar hierarchical clustering scenario. We obtain particle in cell statistics, the galaxy correlation function, the cluster abundance and the cluster-cluster correlation function and statistics for large and small scale velocity fields. We also report here on a semi-quantitative study of the distribution of gas in different temperature ranges. Based on confrontation with observations and comparison with standard CDM, we conclude that the BSI scenario could represent a promising modification of the CDM picture capable of describing many details of large-scale structure formation.Comment: 15 pages, Latex using mn.sty, uuencoded compressed ps-file with 15 figures by anonymous ftp to ftp://ftp.aip.de/incoming/mueller/bsi.u
    corecore