991 research outputs found

    From Specifications to Behavior: Maneuver Verification in a Semantic State Space

    Full text link
    To realize a market entry of autonomous vehicles in the foreseeable future, the behavior planning system will need to abide by the same rules that humans follow. Product liability cannot be enforced without a proper solution to the approval trap. In this paper, we define a semantic abstraction of the continuous space and formalize traffic rules in linear temporal logic (LTL). Sequences in the semantic state space represent maneuvers a high-level planner could choose to execute. We check these maneuvers against the formalized traffic rules using runtime verification. By using the standard model checker NuSMV, we demonstrate the effectiveness of our approach and provide runtime properties for the maneuver verification. We show that high-level behavior can be verified in a semantic state space to fulfill a set of formalized rules, which could serve as a step towards safety of the intended functionality.Comment: Published at IEEE Intelligent Vehicles Symposium (IV), 201

    Falsification-Based Robust Adversarial Reinforcement Learning

    Full text link
    Reinforcement learning (RL) has achieved tremendous progress in solving various sequential decision-making problems, e.g., control tasks in robotics. However, RL methods often fail to generalize to safety-critical scenarios since policies are overfitted to training environments. Previously, robust adversarial reinforcement learning (RARL) was proposed to train an adversarial network that applies disturbances to a system, which improves robustness in test scenarios. A drawback of neural-network-based adversaries is that integrating system requirements without handcrafting sophisticated reward signals is difficult. Safety falsification methods allow one to find a set of initial conditions as well as an input sequence, such that the system violates a given property formulated in temporal logic. In this paper, we propose falsification-based RARL (FRARL), the first generic framework for integrating temporal-logic falsification in adversarial learning to improve policy robustness. With falsification method, we do not need to construct an extra reward function for the adversary. We evaluate our approach on a braking assistance system and an adaptive cruise control system of autonomous vehicles. Experiments show that policies trained with a falsification-based adversary generalize better and show less violation of the safety specification in test scenarios than the ones trained without an adversary or with an adversarial network.Comment: 11 pages, 3 figure

    Search-based optimal motion planning for automated driving

    Full text link
    This paper presents a framework for fast and robust motion planning designed to facilitate automated driving. The framework allows for real-time computation even for horizons of several hundred meters and thus enabling automated driving in urban conditions. This is achieved through several features. Firstly, a convenient geometrical representation of both the search space and driving constraints enables the use of classical path planning approach. Thus, a wide variety of constraints can be tackled simultaneously (other vehicles, traffic lights, etc.). Secondly, an exact cost-to-go map, obtained by solving a relaxed problem, is then used by A*-based algorithm with model predictive flavour in order to compute the optimal motion trajectory. The algorithm takes into account both distance and time horizons. The approach is validated within a simulation study with realistic traffic scenarios. We demonstrate the capability of the algorithm to devise plans both in fast and slow driving conditions, even when full stop is required.Comment: Preprint accepted to 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2018). A supplementary video is available at https://youtu.be/D5XJ5ncSuq

    No driver, No Regulation? --Online Legal Driving Behavior Monitoring for Self-driving Vehicles

    Full text link
    Defined traffic laws must be respected by all vehicles. However, it is essential to know which behaviors violate the current laws, especially when a responsibility issue is involved in an accident. This brings challenges of digitizing human-driver-oriented traffic laws and monitoring vehicles' behaviors continuously. To address these challenges, this paper aims to digitize traffic law comprehensively and provide an application for online monitoring of legal driving behavior for autonomous vehicles. This paper introduces a layered trigger domain-based traffic law digitization architecture with digitization-classified discussions and detailed atomic propositions for online monitoring. The principal laws on a highway and at an intersection are taken as examples, and the corresponding logic and atomic propositions are introduced in detail. Finally, the digitized traffic laws are verified on the Chinese highway and intersection datasets, and defined thresholds are further discussed according to the driving behaviors in the considered dataset. This study can help manufacturers and the government in defining specifications and laws and can also be used as a useful reference in traffic laws compliance decision-making. Source code is available on https://github.com/SOTIF-AVLab/DOTL.Comment: 22 pages, 11 figure

    A Deontic Logic Analysis of Autonomous Systems' Safety

    Full text link
    We consider the pressing question of how to model, verify, and ensure that autonomous systems meet certain \textit{obligations} (like the obligation to respect traffic laws), and refrain from impermissible behavior (like recklessly changing lanes). Temporal logics are heavily used in autonomous system design; however, as we illustrate here, temporal (alethic) logics alone are inappropriate for reasoning about obligations of autonomous systems. This paper proposes the use of Dominance Act Utilitarianism (DAU), a deontic logic of agency, to encode and reason about obligations of autonomous systems. We use DAU to analyze Intel's Responsibility-Sensitive Safety (RSS) proposal as a real-world case study. We demonstrate that DAU can express well-posed RSS rules, formally derive undesirable consequences of these rules, illustrate how DAU could help design systems that have specific obligations, and how to model-check DAU obligations.Comment: 11 pages, 4 figures, In 23rd ACM International Conference on Hybrid Systems: Computation and Contro

    End-to-End Learning of Driving Models with Surround-View Cameras and Route Planners

    Full text link
    For human drivers, having rear and side-view mirrors is vital for safe driving. They deliver a more complete view of what is happening around the car. Human drivers also heavily exploit their mental map for navigation. Nonetheless, several methods have been published that learn driving models with only a front-facing camera and without a route planner. This lack of information renders the self-driving task quite intractable. We investigate the problem in a more realistic setting, which consists of a surround-view camera system with eight cameras, a route planner, and a CAN bus reader. In particular, we develop a sensor setup that provides data for a 360-degree view of the area surrounding the vehicle, the driving route to the destination, and low-level driving maneuvers (e.g. steering angle and speed) by human drivers. With such a sensor setup we collect a new driving dataset, covering diverse driving scenarios and varying weather/illumination conditions. Finally, we learn a novel driving model by integrating information from the surround-view cameras and the route planner. Two route planners are exploited: 1) by representing the planned routes on OpenStreetMap as a stack of GPS coordinates, and 2) by rendering the planned routes on TomTom Go Mobile and recording the progression into a video. Our experiments show that: 1) 360-degree surround-view cameras help avoid failures made with a single front-view camera, in particular for city driving and intersection scenarios; and 2) route planners help the driving task significantly, especially for steering angle prediction.Comment: to be published at ECCV 201
    • …
    corecore