4 research outputs found

    Information Assurance Protocols for Body Sensors Using Physiological Data

    Get PDF
    Griffith Sciences, School of Information and Communication TechnologyFull Tex

    Formal Verification of the IEEE 802.11i WLAN Security Protocol

    No full text
    With the increased usage of wireless LANs (WLANs), businesses and educational institutions are becoming more concerned about wireless network security. The latest WLAN security protocol, the IEEE 802.11i assures rigid security for wireless networks with the support of IEEE 802.1X protocol for authentication, authorization and key distribution. In this study we investigate the integrity of the security model developed by us based on 802.11i Robust Security Mechanism (RSN), strengthening our desire towards establishing a secure wireless network environment. We have used the Symbolic Analysis Laboratory (SAL) tools to formally verify the Behavior Tree models. This paper presents the several Linear Temporal Logic (LTL) formulas established to prove the credibility of our model. We also discuss probable software issues that could arise during implementation. By examining all possible execution traces of the security protocol we have proved our implementation model to be complete and consistent

    Biosensors

    Get PDF
    A biosensor is defined as a detecting device that combines a transducer with a biologically sensitive and selective component. When a specific target molecule interacts with the biological component, a signal is produced, at transducer level, proportional to the concentration of the substance. Therefore biosensors can measure compounds present in the environment, chemical processes, food and human body at low cost if compared with traditional analytical techniques. This book covers a wide range of aspects and issues related to biosensor technology, bringing together researchers from 11 different countries. The book consists of 16 chapters written by 53 authors. The first four chapters describe several aspects of nanotechnology applied to biosensors. The subsequent section, including three chapters, is devoted to biosensor applications in the fields of drug discovery, diagnostics and bacteria detection. The principles behind optical biosensors and some of their application are discussed in chapters from 8 to 11. The last five chapters treat of microelectronics, interfacing circuits, signal transmission, biotelemetry and algorithms applied to biosensing
    corecore