11,513 research outputs found

    Controlled Fuzzy Parallel Rewriting

    Get PDF
    We study a Lindenmayer-like parallel rewriting system to model the growth of filaments (arrays of cells) in which developmental errors may occur. In essence this model is the fuzzy analogue of the derivation-controlled iteration grammar. Under minor assumptions on the family of control languages and on the family of fuzzy languages in the underlying iteration grammar, we show (i) regular control does not provide additional generating power to the model, (ii) the number of fuzzy substitutions in the underlying iteration grammar can be reduced to two, and (iii) the resulting family of fuzzy languages possesses strong closure properties, viz. it is a full hyper-AFFL, i.e., a hyper-algebraically closed full Abstract Family of Fuzzy Languages

    Logic Meets Algebra: the Case of Regular Languages

    Full text link
    The study of finite automata and regular languages is a privileged meeting point of algebra and logic. Since the work of Buchi, regular languages have been classified according to their descriptive complexity, i.e. the type of logical formalism required to define them. The algebraic point of view on automata is an essential complement of this classification: by providing alternative, algebraic characterizations for the classes, it often yields the only opportunity for the design of algorithms that decide expressibility in some logical fragment. We survey the existing results relating the expressibility of regular languages in logical fragments of MSO[S] with algebraic properties of their minimal automata. In particular, we show that many of the best known results in this area share the same underlying mechanics and rely on a very strong relation between logical substitutions and block-products of pseudovarieties of monoid. We also explain the impact of these connections on circuit complexity theory.Comment: 37 page

    Multi-level Contextual Type Theory

    Full text link
    Contextual type theory distinguishes between bound variables and meta-variables to write potentially incomplete terms in the presence of binders. It has found good use as a framework for concise explanations of higher-order unification, characterize holes in proofs, and in developing a foundation for programming with higher-order abstract syntax, as embodied by the programming and reasoning environment Beluga. However, to reason about these applications, we need to introduce meta^2-variables to characterize the dependency on meta-variables and bound variables. In other words, we must go beyond a two-level system granting only bound variables and meta-variables. In this paper we generalize contextual type theory to n levels for arbitrary n, so as to obtain a formal system offering bound variables, meta-variables and so on all the way to meta^n-variables. We obtain a uniform account by collapsing all these different kinds of variables into a single notion of variabe indexed by some level k. We give a decidable bi-directional type system which characterizes beta-eta-normal forms together with a generalized substitution operation.Comment: In Proceedings LFMTP 2011, arXiv:1110.668

    Structural completeness in propositional logics of dependence

    Full text link
    In this paper we prove that three of the main propositional logics of dependence (including propositional dependence logic and inquisitive logic), none of which is structural, are structurally complete with respect to a class of substitutions under which the logics are closed. We obtain an analogues result with respect to stable substitutions, for the negative variants of some well-known intermediate logics, which are intermediate theories that are closely related to inquisitive logic

    Model Checking Linear Logic Specifications

    Full text link
    The overall goal of this paper is to investigate the theoretical foundations of algorithmic verification techniques for first order linear logic specifications. The fragment of linear logic we consider in this paper is based on the linear logic programming language called LO enriched with universally quantified goal formulas. Although LO was originally introduced as a theoretical foundation for extensions of logic programming languages, it can also be viewed as a very general language to specify a wide range of infinite-state concurrent systems. Our approach is based on the relation between backward reachability and provability highlighted in our previous work on propositional LO programs. Following this line of research, we define here a general framework for the bottom-up evaluation of first order linear logic specifications. The evaluation procedure is based on an effective fixpoint operator working on a symbolic representation of infinite collections of first order linear logic formulas. The theory of well quasi-orderings can be used to provide sufficient conditions for the termination of the evaluation of non trivial fragments of first order linear logic.Comment: 53 pages, 12 figures "Under consideration for publication in Theory and Practice of Logic Programming

    An interactive semantics of logic programming

    Full text link
    We apply to logic programming some recently emerging ideas from the field of reduction-based communicating systems, with the aim of giving evidence of the hidden interactions and the coordination mechanisms that rule the operational machinery of such a programming paradigm. The semantic framework we have chosen for presenting our results is tile logic, which has the advantage of allowing a uniform treatment of goals and observations and of applying abstract categorical tools for proving the results. As main contributions, we mention the finitary presentation of abstract unification, and a concurrent and coordinated abstract semantics consistent with the most common semantics of logic programming. Moreover, the compositionality of the tile semantics is guaranteed by standard results, as it reduces to check that the tile systems associated to logic programs enjoy the tile decomposition property. An extension of the approach for handling constraint systems is also discussed.Comment: 42 pages, 24 figure, 3 tables, to appear in the CUP journal of Theory and Practice of Logic Programmin

    Linear-algebraic lambda-calculus

    Full text link
    With a view towards models of quantum computation and/or the interpretation of linear logic, we define a functional language where all functions are linear operators by construction. A small step operational semantic (and hence an interpreter/simulator) is provided for this language in the form of a term rewrite system. The linear-algebraic lambda-calculus hereby constructed is linear in a different (yet related) sense to that, say, of the linear lambda-calculus. These various notions of linearity are discussed in the context of quantum programming languages. KEYWORDS: quantum lambda-calculus, linear lambda-calculus, λ\lambda-calculus, quantum logics.Comment: LaTeX, 23 pages, 10 figures and the LINEAL language interpreter/simulator file (see "other formats"). See the more recent arXiv:quant-ph/061219
    • …
    corecore