8,004 research outputs found

    Beyond DNA: Epigenetics and Proteomics in Forensic Science

    Get PDF
    The use of genetic evidence in criminal cases is well established and has improved the public opinion and credibility of forensic science. However, several shortcomings associated with current genetic profiling techniques exist. Scientific research aimed at increasing the overall knowledge and understanding of biological factors will lead to the development of methods capable of improving the discriminating power of DNA evidence, overcoming limitations associated with DNA evidence, or complementing current methods of DNA profiling. Increased research in the fields of epigenetics and proteomics are particularly promising and relevant to forensic science. Research suggests that epigenetic biomarkers can be used to approximate the age of biological sample donors, differentiate between DNA of monozygotic twins, distinguish between natural and synthesized DNA, and identify body fluid sources from forensic material. Proteomic research studies indicate that mass spectrometry can be used to identify biological matrices and tissue sources from forensic biological samples without compromising DNA evidence. The demand for improved forensic techniques necessitates further research into these fields and, specifically, how the associated methods can be used in forensic science

    Non-coding RNAs in saliva: emerging biomarkers for molecular diagnostics.

    Get PDF
    Saliva is a complex body fluid that comprises secretions from the major and minor salivary glands, which are extensively supplied by blood. Therefore, molecules such as proteins, DNA, RNA, etc., present in plasma could be also present in saliva. Many studies have reported that saliva body fluid can be useful for discriminating several oral diseases, but also systemic diseases including cancer. Most of these studies revealed messenger RNA (mRNA) and proteomic biomarker signatures rather than specific non-coding RNA (ncRNA) profiles. NcRNAs are emerging as new regulators of diverse biological functions, playing an important role in oncogenesis and tumor progression. Indeed, the small size of these molecules makes them very stable in different body fluids and not as susceptible as mRNAs to degradation by ribonucleases (RNases). Therefore, the development of a non-invasive salivary test, based on ncRNAs profiles, could have a significant applicability to clinical practice, not only by reducing the cost of the health system, but also by benefitting the patient. Here, we summarize the current status and clinical implications of the ncRNAs present in human saliva as a source of biological information

    Effectiveness of a novel extraction method for semen: comparison using liquid samples and dried stains

    Full text link
    Forensic analysis of deoxyribonucleic acid (DNA) collected from sexual assault evidence is a multi-step process that requires a great amount of time and resources. A large percentage of samples are mixtures containing DNA from a major female contributor and at least one minor male contributor. The amount of male DNA present is often much less than that of the female, making it difficult to achieve a full short-tandem repeat (STR) profile for identification purposes. The current method employed by many forensic laboratories to separate sperm DNA from non-sperm DNA is the differential extraction. Although a robust and reliable method when applied to liquid samples, the procedure has failed to evolve significantly since first developed.1,2 Between the time it has been collected and tested, sexual assault evidence becomes dried and aged, contributing to the potential loss and degradation of already low amounts of DNA and increasing the likelihood of an incomplete profile.2 This study tests the effectiveness of a combination of enzymes to release DNA from sperm using a variety of substrates. Although this method extracted greater amounts of male DNA than the traditional Qiagen® extraction, further research is necessary to determine if the application of this new method can improve or eventually replace the current procedures.2018-06-16T00:00:00

    Make Research Data Public? -- Not Always so Simple: A Dialogue for Statisticians and Science Editors

    Get PDF
    Putting data into the public domain is not the same thing as making those data accessible for intelligent analysis. A distinguished group of editors and experts who were already engaged in one way or another with the issues inherent in making research data public came together with statisticians to initiate a dialogue about policies and practicalities of requiring published research to be accompanied by publication of the research data. This dialogue carried beyond the broad issues of the advisability, the intellectual integrity, the scientific exigencies to the relevance of these issues to statistics as a discipline and the relevance of statistics, from inference to modeling to data exploration, to science and social science policies on these issues.Comment: Published in at http://dx.doi.org/10.1214/10-STS320 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    PAR1 activation induces the release by Schwann cells of factors promoting cell survival and neuritogenesis

    Get PDF
    Protease-activated receptor 1 (PAR1) is a member of a family of four G-protein-coupled receptors which are activated by proteolytic cleavage of their N-terminal extracellular domain. The expression and the role of PAR1 in peripheral nervous system (PNS) is still poorly investigated, although high PAR1 mRNA expression was found in the dorsal root ganglia and in the non-compacted Schwann cell myelin microvilli at the nodes of Ranvier. Schwann cells (SCs) are the principal population of glial cells of the PNS which myelinate axons and play a key role in axonal regeneration and remyelination. Aim of the present study was to determine if the activation of PAR1 affects the neurotrophic properties of SCs. By double immunofluorescence we observed a specific staining for PAR1 in S100ȕ-positive cells of rat sciatic nerve and sciatic teased fibers. Moreover, PAR1 was highly expressed in SC cultures obtained from both neonatal and adult rat sciatic nerves. When PAR1 specific agonists were added to these cultures an increased proliferation rate was observed. Moreover, the conditioned medium obtained from primary SCs treated with PAR1 agonists increased cell survival and neurite outgrowth on PC12 cells respect to controls. By proteomics, western blot and RT-PCR analyses we identified five proteins which are released by SCs following PAR1 stimulation: Macrophage migration inhibitory factor (Mif), Aldose reductase (Akr1b1), Matrix metalloproteinase-2 (Mmp2), Syndecan-4 (Sdc) and Decorin (Dcn). Conversely, a significant decrease in the level of three proteins was observed: Complement C1r subcomponent (C1r) and Complement component 1 Q subcomponent-bindingprotein (C1qbp). When PAR1 expression was silenced by siRNA the observed pro-survival and neurotrophic properties of SCs appear to be reduced respect to controls. References PAR1 activation affects the neurotrophic properties of Schwann cells. Pompili E1, Fabrizi C2, Somma F2, Correani V3, Maras B3, Schininà ME3, Ciraci V2, Artico M4, Fornai F5, Fumagalli L2. 2017 Jan 4;79:23-33. doi: 10.1016/j.mcn.2017.01.001.Schwann cells (SCs) regulate a wide variety of axonal functions in the peripheral nervous system, providing a supportive growth environment following nerve injury (1). Here we show that rat SCs express the protease-activated receptor-1 (PAR1) both in vivo and in vitro. PAR1 is a G-protein coupled receptor eliciting cellular responses to thrombin and other proteases (2). To investigate if PAR1 activation affects the neurotrophic properties of SCs, this receptor was activated by a specific agonist peptide (TFLLR) and the conditioned medium was transferred to PC12 pheocromocytoma cells for assessing cell survival and neurite outgrowth. Culture medium from SCs treated with 10 µM TFLLR reduced significantly the release of LDH and increased the viability of PC12 cells with respect to the medium of the untreated SCs. Furthermore, conditioned medium from TFLLR-treated SCs increased neurite outgrowth on PC12 cells respect to control medium from untreated cells. To identify putative neurotrophic candidates we performed proteomic analysis on SC secretoma and real time PCR experiments after PAR1 activation. Stimulation of SCs with TFLLR increased specifically the release of a subset of five proteins: Macrophage migration inhibitory factor (Mif), Aldose reductase (Akr1b1), Matrix metalloproteinase-2 (Mmp2), Syndecan-4 (Sdc) and Decorin (Dcn). At the same time there was a significant decrease in the level of three proteins: Complement C1r subcomponent (C1r), Complement component 1 Q subcomponent-binding protein (C1qbp) and Angiogenic factor with G patch and FHA domains 1 (Aggf1). These data indicate that PAR1 stimulation does induce the release by SCs of factors promoting cell survival and neuritogenesis. Among these proteins, Mif, Sdc, Dcn and Mmp2 are of particular interest

    Addressing the needs of traumatic brain injury with clinical proteomics.

    Get PDF
    BackgroundNeurotrauma or injuries to the central nervous system (CNS) are a serious public health problem worldwide. Approximately 75% of all traumatic brain injuries (TBIs) are concussions or other mild TBI (mTBI) forms. Evaluation of concussion injury today is limited to an assessment of behavioral symptoms, often with delay and subject to motivation. Hence, there is an urgent need for an accurate chemical measure in biofluids to serve as a diagnostic tool for invisible brain wounds, to monitor severe patient trajectories, and to predict survival chances. Although a number of neurotrauma marker candidates have been reported, the broad spectrum of TBI limits the significance of small cohort studies. Specificity and sensitivity issues compound the development of a conclusive diagnostic assay, especially for concussion patients. Thus, the neurotrauma field currently has no diagnostic biofluid test in clinical use.ContentWe discuss the challenges of discovering new and validating identified neurotrauma marker candidates using proteomics-based strategies, including targeting, selection strategies and the application of mass spectrometry (MS) technologies and their potential impact to the neurotrauma field.SummaryMany studies use TBI marker candidates based on literature reports, yet progress in genomics and proteomics have started to provide neurotrauma protein profiles. Choosing meaningful marker candidates from such 'long lists' is still pending, as only few can be taken through the process of preclinical verification and large scale translational validation. Quantitative mass spectrometry targeting specific molecules rather than random sampling of the whole proteome, e.g., multiple reaction monitoring (MRM), offers an efficient and effective means to multiplex the measurement of several candidates in patient samples, thereby omitting the need for antibodies prior to clinical assay design. Sample preparation challenges specific to TBI are addressed. A tailored selection strategy combined with a multiplex screening approach is helping to arrive at diagnostically suitable candidates for clinical assay development. A surrogate marker test will be instrumental for critical decisions of TBI patient care and protection of concussion victims from repeated exposures that could result in lasting neurological deficits

    Proteomics goes forensic: detection and mapping of blood signatures in fingermarks

    Get PDF
    A bottom up in situ proteomic method has been developed enabling the mapping of multiple blood signatures on the intact ridges of blood fingermarks byMatrix Assisted Laser Desorption Mass Spectrometry Imaging (MALDI-MSI). This method, at a proof of concept stage, builds upon recently published work demonstrating the opportunity to profile and identify multiple blood signatures in bloodstains via a bottom up proteomic approach. The present protocol addresses the limitation of the previously developed profiling method with respect to destructivity; destructivity should be avoided for evidence such as blood fingermarks, where the ridge detail must be preserved in order to provide the associative link between the biometric information and the events of bloodshed. Using a blood mark reference model, trypsin concentration and spraying conditions have been optimised within the technical constraints of the depositor eventually employed; the application of MALDI-MSI and Ion Mobility MS have enabled the detection, confirmation and visualisation of blood signatures directly onto the ridge pattern. These results are to be considered a first insight into a method eventually informing investigations (and judicial debates) of violent crimes in which the reliable and non-destructive detection and mapping of blood in fingermarks is paramount to reconstruct the events of bloodshed

    Proteomic analysis of the excretory-secretory products from larval stages of Ascaris suum reveals high abundance of glycosyl hydrolases

    Get PDF
    Background: Ascaris lumbricoides and Ascaris suum are socioeconomically important and widespread parasites of humans and pigs, respectively. The excretory-secretory (ES) molecules produced and presented at the parasite-host interface during the different phases of tissue invasion and migration are likely to play critical roles in the induction and development of protective immune and other host responses. Methodology/Principal Findings: The aim of this study was to identify the ES proteins of the different larval stages (L3-egg, L3-lung and L4) by LC-MS/MS. In total, 106 different proteins were identified, 20 in L3-egg, 45 in L3-lung stage and 58 in L4. Although most of the proteins identified were stage-specific, 15 were identified in the ES products of at least two stages. Two proteins, i.e. a 14-3-3-like protein and a serpin-like protein, were present in the ES products from the three different larval stages investigated. Interestingly, a comparison of ES products from L4 with those of L3-egg and L3-lung showed an abundance of metabolic enzymes, particularly glycosyl hydrolases. Further study indicated that most of these glycolytic enzymes were transcriptionally upregulated from L4 onwards, with a peak in the adult stage, particularly in intestinal tissue. This was also confirmed by enzymatic assays, showing the highest glycosidase activity in protein extracts from adult worms gut. Conclusions/Significance: The present proteomic analysis provides important information on the host-parasite interaction and the molecular of migratory stages of A. suum. In particularly, the high transcriptionally upregulated of glycosyl hydrolases from L4 onwards reveals indicate that the degradation of complex carbohydrates forms an essential part of the energy metabolism of this parasite once it establishes in the small intestine
    corecore