2,182 research outputs found

    Unsupervised Object Discovery and Tracking in Video Collections

    Get PDF
    This paper addresses the problem of automatically localizing dominant objects as spatio-temporal tubes in a noisy collection of videos with minimal or even no supervision. We formulate the problem as a combination of two complementary processes: discovery and tracking. The first one establishes correspondences between prominent regions across videos, and the second one associates successive similar object regions within the same video. Interestingly, our algorithm also discovers the implicit topology of frames associated with instances of the same object class across different videos, a role normally left to supervisory information in the form of class labels in conventional image and video understanding methods. Indeed, as demonstrated by our experiments, our method can handle video collections featuring multiple object classes, and substantially outperforms the state of the art in colocalization, even though it tackles a broader problem with much less supervision

    Spatio-temporal Video Parsing for Abnormality Detection

    Get PDF
    Abnormality detection in video poses particular challenges due to the infinite size of the class of all irregular objects and behaviors. Thus no (or by far not enough) abnormal training samples are available and we need to find abnormalities in test data without actually knowing what they are. Nevertheless, the prevailing concept of the field is to directly search for individual abnormal local patches or image regions independent of another. To address this problem, we propose a method for joint detection of abnormalities in videos by spatio-temporal video parsing. The goal of video parsing is to find a set of indispensable normal spatio-temporal object hypotheses that jointly explain all the foreground of a video, while, at the same time, being supported by normal training samples. Consequently, we avoid a direct detection of abnormalities and discover them indirectly as those hypotheses which are needed for covering the foreground without finding an explanation for themselves by normal samples. Abnormalities are localized by MAP inference in a graphical model and we solve it efficiently by formulating it as a convex optimization problem. We experimentally evaluate our approach on several challenging benchmark sets, improving over the state-of-the-art on all standard benchmarks both in terms of abnormality classification and localization.Comment: 15 pages, 12 figures, 3 table
    corecore