10,706 research outputs found

    Identifying Modes of Intent from Driver Behaviors in Dynamic Environments

    Full text link
    In light of growing attention of intelligent vehicle systems, we propose developing a driver model that uses a hybrid system formulation to capture the intent of the driver. This model hopes to capture human driving behavior in a way that can be utilized by semi- and fully autonomous systems in heterogeneous environments. We consider a discrete set of high level goals or intent modes, that is designed to encompass the decision making process of the human. A driver model is derived using a dataset of lane changes collected in a realistic driving simulator, in which the driver actively labels data to give us insight into her intent. By building the labeled dataset, we are able to utilize classification tools to build the driver model using features of based on her perception of the environment, and achieve high accuracy in identifying driver intent. Multiple algorithms are presented and compared on the dataset, and a comparison of the varying behaviors between drivers is drawn. Using this modeling methodology, we present a model that can be used to assess driver behaviors and to develop human-inspired safety metrics that can be utilized in intelligent vehicular systems.Comment: Submitted to ITSC 201

    Compositional Verification for Autonomous Systems with Deep Learning Components

    Full text link
    As autonomy becomes prevalent in many applications, ranging from recommendation systems to fully autonomous vehicles, there is an increased need to provide safety guarantees for such systems. The problem is difficult, as these are large, complex systems which operate in uncertain environments, requiring data-driven machine-learning components. However, learning techniques such as Deep Neural Networks, widely used today, are inherently unpredictable and lack the theoretical foundations to provide strong assurance guarantees. We present a compositional approach for the scalable, formal verification of autonomous systems that contain Deep Neural Network components. The approach uses assume-guarantee reasoning whereby {\em contracts}, encoding the input-output behavior of individual components, allow the designer to model and incorporate the behavior of the learning-enabled components working side-by-side with the other components. We illustrate the approach on an example taken from the autonomous vehicles domain
    • …
    corecore