15 research outputs found

    The Optimal Single Copy Measurement for the Hidden Subgroup Problem

    Full text link
    The optimization of measurements for the state distinction problem has recently been applied to the theory of quantum algorithms with considerable successes, including efficient new quantum algorithms for the non-abelian hidden subgroup problem. Previous work has identified the optimal single copy measurement for the hidden subgroup problem over abelian groups as well as for the non-abelian problem in the setting where the subgroups are restricted to be all conjugate to each other. Here we describe the optimal single copy measurement for the hidden subgroup problem when all of the subgroups of the group are given with equal a priori probability. The optimal measurement is seen to be a hybrid of the two previously discovered single copy optimal measurements for the hidden subgroup problem.Comment: 8 pages. Error in main proof fixe

    From optimal measurement to efficient quantum algorithms for the hidden subgroup problem over semidirect product groups

    Full text link
    We approach the hidden subgroup problem by performing the so-called pretty good measurement on hidden subgroup states. For various groups that can be expressed as the semidirect product of an abelian group and a cyclic group, we show that the pretty good measurement is optimal and that its probability of success and unitary implementation are closely related to an average-case algebraic problem. By solving this problem, we find efficient quantum algorithms for a number of nonabelian hidden subgroup problems, including some for which no efficient algorithm was previously known: certain metacyclic groups as well as all groups of the form (Z_p)^r X| Z_p for fixed r (including the Heisenberg group, r=2). In particular, our results show that entangled measurements across multiple copies of hidden subgroup states can be useful for efficiently solving the nonabelian HSP.Comment: 18 pages; v2: updated references on optimal measuremen

    The Symmetric Group Defies Strong Fourier Sampling

    Get PDF
    The dramatic exponential speedups of quantum algorithms over their best existing classical counterparts were ushered in by the technique of Fourier sampling, introduced by Bernstein and Vazirani and developed by Simon and Shor into an approach to the hidden subgroup problem. This approach has proved successful for abelian groups, leading to efficient algorithms for factoring, extracting discrete logarithms, and other number-theoretic problems. We show, however, that this method cannot resolve the hidden subgroup problem in the symmetric groups, even in the weakest, information-theoretic sense. In particular, we show that the Graph Isomorphism problem cannot be solved by this approach. Our work implies that any quantum approach based upon the measurement of coset states must depart from the original framework by using entangled measurements on multiple coset states
    corecore