4,234 research outputs found

    Adversarial Learning for Neural Dialogue Generation

    Full text link
    In this paper, drawing intuition from the Turing test, we propose using adversarial training for open-domain dialogue generation: the system is trained to produce sequences that are indistinguishable from human-generated dialogue utterances. We cast the task as a reinforcement learning (RL) problem where we jointly train two systems, a generative model to produce response sequences, and a discriminator---analagous to the human evaluator in the Turing test--- to distinguish between the human-generated dialogues and the machine-generated ones. The outputs from the discriminator are then used as rewards for the generative model, pushing the system to generate dialogues that mostly resemble human dialogues. In addition to adversarial training we describe a model for adversarial {\em evaluation} that uses success in fooling an adversary as a dialogue evaluation metric, while avoiding a number of potential pitfalls. Experimental results on several metrics, including adversarial evaluation, demonstrate that the adversarially-trained system generates higher-quality responses than previous baselines

    Physical Adversarial Attack meets Computer Vision: A Decade Survey

    Full text link
    Although Deep Neural Networks (DNNs) have achieved impressive results in computer vision, their exposed vulnerability to adversarial attacks remains a serious concern. A series of works has shown that by adding elaborate perturbations to images, DNNs could have catastrophic degradation in performance metrics. And this phenomenon does not only exist in the digital space but also in the physical space. Therefore, estimating the security of these DNNs-based systems is critical for safely deploying them in the real world, especially for security-critical applications, e.g., autonomous cars, video surveillance, and medical diagnosis. In this paper, we focus on physical adversarial attacks and provide a comprehensive survey of over 150 existing papers. We first clarify the concept of the physical adversarial attack and analyze its characteristics. Then, we define the adversarial medium, essential to perform attacks in the physical world. Next, we present the physical adversarial attack methods in task order: classification, detection, and re-identification, and introduce their performance in solving the trilemma: effectiveness, stealthiness, and robustness. In the end, we discuss the current challenges and potential future directions.Comment: 32 pages. Under Revie

    HotFlip: White-Box Adversarial Examples for Text Classification

    Full text link
    We propose an efficient method to generate white-box adversarial examples to trick a character-level neural classifier. We find that only a few manipulations are needed to greatly decrease the accuracy. Our method relies on an atomic flip operation, which swaps one token for another, based on the gradients of the one-hot input vectors. Due to efficiency of our method, we can perform adversarial training which makes the model more robust to attacks at test time. With the use of a few semantics-preserving constraints, we demonstrate that HotFlip can be adapted to attack a word-level classifier as well
    • …
    corecore