4 research outputs found

    Folding and unfolding origami tessellation by reusing folding path

    Full text link
    Recent advances in robotics engineering have enabled the realization of self-folding machines. Rigid origami is usually used as the underlying model for the self-folding machines whose surface remains rigid during folding except at joints. A key issue in designing rigid origami is foldability that concerns about finding fold-ing steps from a flat sheet of crease pattern to a desired folded state. Although recent computational methods allow rapid simulation of folding process of certain rigid origamis, these methods can fail even when the input crease pattern is extremely simple. In this paper, we take on the challenge of planning folding and unfolding motion of origami tessellations, which are composed of repetitive crease patterns. The number of crease lines of a tessellation is usually large, thus searching in such high dimensional configuration space with the require-ment of maintaining origami rigidity is nontrivial. We propose a motion planner that takes symmetry into con-sideration and reuses folding path found on the essential crease pattern. Both of these strategies enable us to fold large origami tessellation much more efficiently than the existing methods. Our experimental results show that the proposed method successfully folds several types of rigid origami tessellations that the existing methods fail to fold.

    Kinematics, Structural Mechanics, and Design of Origami Structures with Smooth Folds

    Get PDF
    Origami provides novel approaches to the fabrication, assembly, and functionality of engineering structures in various fields such as aerospace, robotics, etc. With the increase in complexity of the geometry and materials for origami structures that provide engineering utility, computational models and design methods for such structures have become essential. Currently available models and design methods for origami structures are generally limited to the idealization of the folds as creases of zeroth-order geometric continuity. Such an idealization is not proper for origami structures having non-negligible thickness or maximum curvature at the folds restricted by material limitations. Thus, for general structures, creased folds of merely zeroth-order geometric continuity are not appropriate representations of structural response and a new approach is needed. The first contribution of this dissertation is a model for the kinematics of origami structures having realistic folds of non-zero surface area and exhibiting higher-order geometric continuity, here termed smooth folds. The geometry of the smooth folds and the constraints on their associated kinematic variables are presented. A numerical implementation of the model allowing for kinematic simulation of structures having arbitrary fold patterns is also described. Examples illustrating the capability of the model to capture realistic structural folding response are provided. Subsequently, a method for solving the origami design problem of determining the geometry of a single planar sheet and its pattern of smooth folds that morphs into a given three-dimensional goal shape, discretized as a polygonal mesh, is presented. The design parameterization of the planar sheet and the constraints that allow for a valid pattern of smooth folds and approximation of the goal shape in a known folded configuration are presented. Various testing examples considering goal shapes of diverse geometries are provided. Afterwards, a model for the structural mechanics of origami continuum bodies with smooth folds is presented. Such a model entails the integration of the presented kinematic model and existing plate theories in order to obtain a structural representation for folds having non-zero thickness and comprised of arbitrary materials. The model is validated against finite element analysis. The last contribution addresses the design and analysis of active material-based self-folding structures that morph via simultaneous folding towards a given three-dimensional goal shape starting from a planar configuration. Implementation examples including shape memory alloy (SMA)-based self-folding structures are provided
    corecore