1,694 research outputs found

    Security and Privacy for Green IoT-based Agriculture: Review, Blockchain solutions, and Challenges

    Get PDF
    open access articleThis paper presents research challenges on security and privacy issues in the field of green IoT-based agriculture. We start by describing a four-tier green IoT-based agriculture architecture and summarizing the existing surveys that deal with smart agriculture. Then, we provide a classification of threat models against green IoT-based agriculture into five categories, including, attacks against privacy, authentication, confidentiality, availability, and integrity properties. Moreover, we provide a taxonomy and a side-by-side comparison of the state-of-the-art methods toward secure and privacy-preserving technologies for IoT applications and how they will be adapted for green IoT-based agriculture. In addition, we analyze the privacy-oriented blockchain-based solutions as well as consensus algorithms for IoT applications and how they will be adapted for green IoT-based agriculture. Based on the current survey, we highlight open research challenges and discuss possible future research directions in the security and privacy of green IoT-based agriculture

    Systematic Review on Security and Privacy Requirements in Edge Computing: State of the Art and Future Research Opportunities

    Get PDF
    Edge computing is a promising paradigm that enhances the capabilities of cloud computing. In order to continue patronizing the computing services, it is essential to conserve a good atmosphere free from all kinds of security and privacy breaches. The security and privacy issues associated with the edge computing environment have narrowed the overall acceptance of the technology as a reliable paradigm. Many researchers have reviewed security and privacy issues in edge computing, but not all have fully investigated the security and privacy requirements. Security and privacy requirements are the objectives that indicate the capabilities as well as functions a system performs in eliminating certain security and privacy vulnerabilities. The paper aims to substantially review the security and privacy requirements of the edge computing and the various technological methods employed by the techniques used in curbing the threats, with the aim of helping future researchers in identifying research opportunities. This paper investigate the current studies and highlights the following: (1) the classification of security and privacy requirements in edge computing, (2) the state of the art techniques deployed in curbing the security and privacy threats, (3) the trends of technological methods employed by the techniques, (4) the metrics used for evaluating the performance of the techniques, (5) the taxonomy of attacks affecting the edge network, and the corresponding technological trend employed in mitigating the attacks, and, (6) research opportunities for future researchers in the area of edge computing security and privacy

    Machine Learning Differential Privacy With Multifunctional Aggregation in a Fog Computing Architecture

    Full text link
    © 2018 IEEE. Data aggregation plays an important role in the Internet of Things, and its study and analysis has resulted in a range of innovative services and benefits for people. However, the privacy issues associated with raw sensory data raise significant concerns due to the sensitive nature of the user information it often contains. Thus, numerous schemes have been proposed over the last few decades to preserve the privacy of users' data. Most methods are based on encryption technology, which is computationally and communicationally expensive. In addition, most methods can only handle a single aggregation function. Therefore, in this paper, we propose a multifunctional data aggregation method with differential privacy. The method is based on machine learning and can support a wide range of statistical aggregation functions, including additive and non-additive aggregation. It operates within a fog computing architecture, which extends cloud computing to the edge of the network, alleviating much of the computational burden on the cloud server. And, by only reporting the results of the aggregation to the server, communication efficiency is improved. Extensive experimental results show that the proposed method not only answers flexible aggregation queries that meet diversified aggregation goals, but also produces aggregation results with high accuracy
    corecore