2,796 research outputs found

    Fog-supported delay-constrained energy-saving live migration of VMs over multiPath TCP/IP 5G connections

    Get PDF
    The incoming era of the fifth-generation fog computing-supported radio access networks (shortly, 5G FOGRANs) aims at exploiting computing/networking resource virtualization, in order to augment the limited resources of wireless devices through the seamless live migration of virtual machines (VMs) toward nearby fog data centers. For this purpose, the bandwidths of the multiple wireless network interface cards of the wireless devices may be aggregated under the control of the emerging MultiPathTCP (MPTCP) protocol. However, due to the fading and mobility-induced phenomena, the energy consumptions of the current state-of-the-art VM migration techniques may still offset their expected benefits. Motivated by these considerations, in this paper, we analytically characterize and implement in software and numerically test the optimal minimum-energy settable-complexity bandwidth manager (SCBM) for the live migration of VMs over 5G FOGRAN MPTCP connections. The key features of the proposed SCBM are that: 1) its implementation complexity is settable on-line on the basis of the target energy consumption versus implementation complexity tradeoff; 2) it minimizes the network energy consumed by the wireless device for sustaining the migration process under hard constraints on the tolerated migration times and downtimes; and 3) by leveraging a suitably designed adaptive mechanism, it is capable to quickly react to (possibly, unpredicted) fading and/or mobility-induced abrupt changes of the wireless environment without requiring forecasting. The actual effectiveness of the proposed SCBM is supported by extensive energy versus delay performance comparisons that cover: 1) a number of heterogeneous 3G/4G/WiFi FOGRAN scenarios; 2) synthetic and real-world workloads; and, 3) MPTCP and wireless connections

    Orchestrating Service Migration for Low Power MEC-Enabled IoT Devices

    Full text link
    Multi-Access Edge Computing (MEC) is a key enabling technology for Fifth Generation (5G) mobile networks. MEC facilitates distributed cloud computing capabilities and information technology service environment for applications and services at the edges of mobile networks. This architectural modification serves to reduce congestion, latency, and improve the performance of such edge colocated applications and devices. In this paper, we demonstrate how reactive service migration can be orchestrated for low-power MEC-enabled Internet of Things (IoT) devices. Here, we use open-source Kubernetes as container orchestration system. Our demo is based on traditional client-server system from user equipment (UE) over Long Term Evolution (LTE) to the MEC server. As the use case scenario, we post-process live video received over web real-time communication (WebRTC). Next, we integrate orchestration by Kubernetes with S1 handovers, demonstrating MEC-based software defined network (SDN). Now, edge applications may reactively follow the UE within the radio access network (RAN), expediting low-latency. The collected data is used to analyze the benefits of the low-power MEC-enabled IoT device scheme, in which end-to-end (E2E) latency and power requirements of the UE are improved. We further discuss the challenges of implementing such schemes and future research directions therein

    TrustShadow: Secure Execution of Unmodified Applications with ARM TrustZone

    Full text link
    The rapid evolution of Internet-of-Things (IoT) technologies has led to an emerging need to make it smarter. A variety of applications now run simultaneously on an ARM-based processor. For example, devices on the edge of the Internet are provided with higher horsepower to be entrusted with storing, processing and analyzing data collected from IoT devices. This significantly improves efficiency and reduces the amount of data that needs to be transported to the cloud for data processing, analysis and storage. However, commodity OSes are prone to compromise. Once they are exploited, attackers can access the data on these devices. Since the data stored and processed on the devices can be sensitive, left untackled, this is particularly disconcerting. In this paper, we propose a new system, TrustShadow that shields legacy applications from untrusted OSes. TrustShadow takes advantage of ARM TrustZone technology and partitions resources into the secure and normal worlds. In the secure world, TrustShadow constructs a trusted execution environment for security-critical applications. This trusted environment is maintained by a lightweight runtime system that coordinates the communication between applications and the ordinary OS running in the normal world. The runtime system does not provide system services itself. Rather, it forwards requests for system services to the ordinary OS, and verifies the correctness of the responses. To demonstrate the efficiency of this design, we prototyped TrustShadow on a real chip board with ARM TrustZone support, and evaluated its performance using both microbenchmarks and real-world applications. We showed TrustShadow introduces only negligible overhead to real-world applications.Comment: MobiSys 201

    VirtFogSim: A parallel toolbox for dynamic energy-delay performance testing and optimization of 5G Mobile-Fog-Cloud virtualized platforms

    Get PDF
    It is expected that the pervasive deployment of multi-tier 5G-supported Mobile-Fog-Cloudtechnological computing platforms will constitute an effective means to support the real-time execution of future Internet applications by resource- and energy-limited mobile devices. Increasing interest in this emerging networking-computing technology demands the optimization and performance evaluation of several parts of the underlying infrastructures. However, field trials are challenging due to their operational costs, and in every case, the obtained results could be difficult to repeat and customize. These emergingMobile-Fog-Cloud ecosystems still lack, indeed, customizable software tools for the performance simulation of their computing-networking building blocks. Motivated by these considerations, in this contribution, we present VirtFogSim. It is aMATLAB-supported software toolbox that allows the dynamic joint optimization and tracking of the energy and delay performance of Mobile-Fog-Cloud systems for the execution of applications described by general Directed Application Graphs (DAGs). In a nutshell, the main peculiar features of the proposed VirtFogSim toolbox are that: (i) it allows the joint dynamic energy-aware optimization of the placement of the application tasks and the allocation of the needed computing-networking resources under hard constraints on acceptable overall execution times, (ii) it allows the repeatable and customizable simulation of the resulting energy-delay performance of the overall system; (iii) it allows the dynamic tracking of the performed resource allocation under time-varying operational environments, as those typically featuring mobile applications; (iv) it is equipped with a user-friendly Graphic User Interface (GUI) that supports a number of graphic formats for data rendering, and (v) itsMATLAB code is optimized for running atop multi-core parallel execution platforms. To check both the actual optimization and scalability capabilities of the VirtFogSim toolbox, a number of experimental setups featuring different use cases and operational environments are simulated, and their performances are compared

    Learning-in-the-Fog (LiFo): Deep learning meets Fog Computing for the minimum-energy distributed early-exit of inference in delay-critical IoT realms

    Get PDF
    Fog Computing (FC) and Conditional Deep Neural Networks (CDDNs) with early exits are two emerging paradigms which, up to now, are evolving in a standing-Alone fashion. However, their integration is expected to be valuable in IoT applications in which resource-poor devices must mine large volume of sensed data in real-Time. Motivated by this consideration, this article focuses on the optimized design and performance validation of {L} earning-{i} ext{n}-The-Fo g (LiFo), a novel virtualized technological platform for the minimum-energy and delay-constrained execution of the inference-phase of CDDNs with early exits atop multi-Tier networked computing infrastructures composed by multiple hierarchically-organized wireless Fog nodes. The main research contributions of this article are threefold, namely: (i) we design the main building blocks and supporting services of the LiFo architecture by explicitly accounting for the multiple constraints on the per-exit maximum inference delays of the supported CDNN; (ii) we develop an adaptive algorithm for the minimum-energy distributed joint allocation and reconfiguration of the available computing-plus-networking resources of the LiFo platform. Interestingly enough, the designed algorithm is capable to self-detect (typically, unpredictable) environmental changes and quickly self-react them by properly re-configuring the available computing and networking resources; and, (iii) we design the main building blocks and related virtualized functionalities of an Information Centric-based networking architecture, which enables the LiFo platform to perform the aggregation of spatially-distributed IoT sensed data. The energy-vs.-inference delay LiFo performance is numerically tested under a number of IoT scenarios and compared against the corresponding ones of some state-of-The-Art benchmark solutions that do not rely on the Fog support

    Deepfogsim: A toolbox for execution and performance evaluation of the inference phase of conditional deep neural networks with early exits atop distributed fog platforms

    Get PDF
    The recent introduction of the so-called Conditional Neural Networks (CDNNs) with multiple early exits, executed atop virtualized multi-tier Fog platforms, makes feasible the real-time and energy-efficient execution of analytics required by future Internet applications. However, until now, toolkits for the evaluation of energy-vs.-delay performance of the inference phase of CDNNs executed on such platforms, have not been available. Motivated by these considerations, in this contribution, we present DeepFogSim. It is a MATLAB-supported software toolbox aiming at testing the performance of virtualized technological platforms for the real-time distributed execution of the inference phase of CDNNs with early exits under IoT realms. The main peculiar features of the proposed DeepFogSim toolbox are that: (i) it allows the joint dynamic energy-aware optimization of the Fog-hosted computing-networking resources under hard constraints on the tolerated inference delays; (ii) it allows the repeatable and customizable simulation of the resulting energy-delay performance of the overall Fog execution platform; (iii) it allows the dynamic tracking of the performed resource allocation under time-varying operating conditions and/or failure events; and (iv) it is equipped with a user-friendly Graphic User Interface (GUI) that supports a number of graphic formats for data rendering. Some numerical results give evidence for about the actual capabilities of the proposed DeepFogSim toolbox
    • …
    corecore