3 research outputs found

    Focusing Translational Variant Bistatic Forward-Looking SAR Using Keystone Transform and Extended Nonlinear Chirp Scaling

    No full text
    Bistatic Synthetic Aperture Radar (SAR) has attracted increasing attention in recent years due to its unique advantages, such as the ability of forward-looking imaging. In translational variant bistatic forward-looking SAR (TV-BFSAR), it is difficult to get a well focused image due to large range cell migration (RCM) and 2-D variation of both Doppler characteristics and RCM. In this paper, an extended azimuth nonlinear chirp scaling (NLCS) algorithm is proposed to deal with these problems. Firstly, Keystone Transform (KT) is introduced to remove the spatial-variant linear RCM, which is of great significance in TV-BFSAR. Secondly, a correction factor is multiplied to the signal in range frequency domain to compensate for the residual RCM. At last, a fourth-order filtering together with azimuth NLCS is performed in every range gate to equalize both the azimuth-variant Doppler centroid and frequency modulation rate based on the azimuth numerical fitting. The proposed method is verified by simulation and real data processing. Multiple targets are generated and focused by the method, of which the peak sidelobe ratio (PSLR) is around −13 dB and integrated sidelobe ratio (ISLR) is around −10 dB. The method is accurate and can achieve high-resolution focusing for TV-BFSAR data
    corecore