69,637 research outputs found

    Network-based ranking in social systems: three challenges

    Get PDF
    Ranking algorithms are pervasive in our increasingly digitized societies, with important real-world applications including recommender systems, search engines, and influencer marketing practices. From a network science perspective, network-based ranking algorithms solve fundamental problems related to the identification of vital nodes for the stability and dynamics of a complex system. Despite the ubiquitous and successful applications of these algorithms, we argue that our understanding of their performance and their applications to real-world problems face three fundamental challenges: (i) Rankings might be biased by various factors; (2) their effectiveness might be limited to specific problems; and (3) agents' decisions driven by rankings might result in potentially vicious feedback mechanisms and unhealthy systemic consequences. Methods rooted in network science and agent-based modeling can help us to understand and overcome these challenges.Comment: Perspective article. 9 pages, 3 figure

    Citation Statistics

    Full text link
    This is a report about the use and misuse of citation data in the assessment of scientific research. The idea that research assessment must be done using ``simple and objective'' methods is increasingly prevalent today. The ``simple and objective'' methods are broadly interpreted as bibliometrics, that is, citation data and the statistics derived from them. There is a belief that citation statistics are inherently more accurate because they substitute simple numbers for complex judgments, and hence overcome the possible subjectivity of peer review. But this belief is unfounded.Comment: This paper commented in: [arXiv:0910.3532], [arXiv:0910.3537], [arXiv:0910.3543], [arXiv:0910.3546]. Rejoinder in [arXiv:0910.3548]. Published in at http://dx.doi.org/10.1214/09-STS285 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Diffusion of scientific credits and the ranking of scientists

    Full text link
    Recently, the abundance of digital data enabled the implementation of graph based ranking algorithms that provide system level analysis for ranking publications and authors. Here we take advantage of the entire Physical Review publication archive (1893-2006) to construct authors' networks where weighted edges, as measured from opportunely normalized citation counts, define a proxy for the mechanism of scientific credit transfer. On this network we define a ranking method based on a diffusion algorithm that mimics the spreading of scientific credits on the network. We compare the results obtained with our algorithm with those obtained by local measures such as the citation count and provide a statistical analysis of the assignment of major career awards in the area of Physics. A web site where the algorithm is made available to perform customized rank analysis can be found at the address http://www.physauthorsrank.orgComment: Revised version. 11 pages, 10 figures, 1 table. The portal to compute the rankings of scientists is at http://www.physauthorsrank.or

    SIGIR: scholar vs. scholars' interpretation

    Get PDF
    Google Scholar allows researchers to search through a free and extensive source of information on scientific publications. In this paper we show that within the limited context of SIGIR proceedings, the rankings created by Google Scholar are both significantly different and very negatively correlated with those of domain experts
    corecore