48,736 research outputs found

    Focal Visual-Text Attention for Visual Question Answering

    Full text link
    Recent insights on language and vision with neural networks have been successfully applied to simple single-image visual question answering. However, to tackle real-life question answering problems on multimedia collections such as personal photos, we have to look at whole collections with sequences of photos or videos. When answering questions from a large collection, a natural problem is to identify snippets to support the answer. In this paper, we describe a novel neural network called Focal Visual-Text Attention network (FVTA) for collective reasoning in visual question answering, where both visual and text sequence information such as images and text metadata are presented. FVTA introduces an end-to-end approach that makes use of a hierarchical process to dynamically determine what media and what time to focus on in the sequential data to answer the question. FVTA can not only answer the questions well but also provides the justifications which the system results are based upon to get the answers. FVTA achieves state-of-the-art performance on the MemexQA dataset and competitive results on the MovieQA dataset.Comment: In CVPR 2018. Code, models and dataset are available here: https://memexqa.cs.cmu.edu

    Progressive Attention Memory Network for Movie Story Question Answering

    Full text link
    This paper proposes the progressive attention memory network (PAMN) for movie story question answering (QA). Movie story QA is challenging compared to VQA in two aspects: (1) pinpointing the temporal parts relevant to answer the question is difficult as the movies are typically longer than an hour, (2) it has both video and subtitle where different questions require different modality to infer the answer. To overcome these challenges, PAMN involves three main features: (1) progressive attention mechanism that utilizes cues from both question and answer to progressively prune out irrelevant temporal parts in memory, (2) dynamic modality fusion that adaptively determines the contribution of each modality for answering the current question, and (3) belief correction answering scheme that successively corrects the prediction score on each candidate answer. Experiments on publicly available benchmark datasets, MovieQA and TVQA, demonstrate that each feature contributes to our movie story QA architecture, PAMN, and improves performance to achieve the state-of-the-art result. Qualitative analysis by visualizing the inference mechanism of PAMN is also provided.Comment: CVPR 2019, Accepte

    Holistic Multi-modal Memory Network for Movie Question Answering

    Full text link
    Answering questions according to multi-modal context is a challenging problem as it requires a deep integration of different data sources. Existing approaches only employ partial interactions among data sources in one attention hop. In this paper, we present the Holistic Multi-modal Memory Network (HMMN) framework which fully considers the interactions between different input sources (multi-modal context, question) in each hop. In addition, it takes answer choices into consideration during the context retrieval stage. Therefore, the proposed framework effectively integrates multi-modal context, question, and answer information, which leads to more informative context retrieved for question answering. Our HMMN framework achieves state-of-the-art accuracy on MovieQA dataset. Extensive ablation studies show the importance of holistic reasoning and contributions of different attention strategies

    Interpretable Counting for Visual Question Answering

    Full text link
    Questions that require counting a variety of objects in images remain a major challenge in visual question answering (VQA). The most common approaches to VQA involve either classifying answers based on fixed length representations of both the image and question or summing fractional counts estimated from each section of the image. In contrast, we treat counting as a sequential decision process and force our model to make discrete choices of what to count. Specifically, the model sequentially selects from detected objects and learns interactions between objects that influence subsequent selections. A distinction of our approach is its intuitive and interpretable output, as discrete counts are automatically grounded in the image. Furthermore, our method outperforms the state of the art architecture for VQA on multiple metrics that evaluate counting.Comment: ICLR 201

    ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases

    Full text link
    The chest X-ray is one of the most commonly accessible radiological examinations for screening and diagnosis of many lung diseases. A tremendous number of X-ray imaging studies accompanied by radiological reports are accumulated and stored in many modern hospitals' Picture Archiving and Communication Systems (PACS). On the other side, it is still an open question how this type of hospital-size knowledge database containing invaluable imaging informatics (i.e., loosely labeled) can be used to facilitate the data-hungry deep learning paradigms in building truly large-scale high precision computer-aided diagnosis (CAD) systems. In this paper, we present a new chest X-ray database, namely "ChestX-ray8", which comprises 108,948 frontal-view X-ray images of 32,717 unique patients with the text-mined eight disease image labels (where each image can have multi-labels), from the associated radiological reports using natural language processing. Importantly, we demonstrate that these commonly occurring thoracic diseases can be detected and even spatially-located via a unified weakly-supervised multi-label image classification and disease localization framework, which is validated using our proposed dataset. Although the initial quantitative results are promising as reported, deep convolutional neural network based "reading chest X-rays" (i.e., recognizing and locating the common disease patterns trained with only image-level labels) remains a strenuous task for fully-automated high precision CAD systems. Data download link: https://nihcc.app.box.com/v/ChestXray-NIHCCComment: CVPR 2017 spotlight;V1: CVPR submission+supplementary; V2: Statistics and benchmark results on published ChestX-ray14 dataset are updated in Appendix B V3: Minor correction V4: new data download link upated: https://nihcc.app.box.com/v/ChestXray-NIHCC V5: Update benchmark results on the published data split in the appendi

    Revisiting EmbodiedQA: A Simple Baseline and Beyond

    Full text link
    In Embodied Question Answering (EmbodiedQA), an agent interacts with an environment to gather necessary information for answering user questions. Existing works have laid a solid foundation towards solving this interesting problem. But the current performance, especially in navigation, suggests that EmbodiedQA might be too challenging for the contemporary approaches. In this paper, we empirically study this problem and introduce 1) a simple yet effective baseline that achieves promising performance; 2) an easier and practical setting for EmbodiedQA where an agent has a chance to adapt the trained model to a new environment before it actually answers users questions. In this new setting, we randomly place a few objects in new environments, and upgrade the agent policy by a distillation network to retain the generalization ability from the trained model. On the EmbodiedQA v1 benchmark, under the standard setting, our simple baseline achieves very competitive results to the-state-of-the-art; in the new setting, we found the introduced small change in settings yields a notable gain in navigation.Comment: Accepted to IEEE Transactions on Image Processing (TIP

    MCQA: Multimodal Co-attention Based Network for Question Answering

    Full text link
    We present MCQA, a learning-based algorithm for multimodal question answering. MCQA explicitly fuses and aligns the multimodal input (i.e. text, audio, and video), which forms the context for the query (question and answer). Our approach fuses and aligns the question and the answer within this context. Moreover, we use the notion of co-attention to perform cross-modal alignment and multimodal context-query alignment. Our context-query alignment module matches the relevant parts of the multimodal context and the query with each other and aligns them to improve the overall performance. We evaluate the performance of MCQA on Social-IQ, a benchmark dataset for multimodal question answering. We compare the performance of our algorithm with prior methods and observe an accuracy improvement of 4-7%

    Visual Question Answering using Deep Learning: A Survey and Performance Analysis

    Full text link
    The Visual Question Answering (VQA) task combines challenges for processing data with both Visual and Linguistic processing, to answer basic `common sense' questions about given images. Given an image and a question in natural language, the VQA system tries to find the correct answer to it using visual elements of the image and inference gathered from textual questions. In this survey, we cover and discuss the recent datasets released in the VQA domain dealing with various types of question-formats and robustness of the machine-learning models. Next, we discuss about new deep learning models that have shown promising results over the VQA datasets. At the end, we present and discuss some of the results computed by us over the vanilla VQA model, Stacked Attention Network and the VQA Challenge 2017 winner model. We also provide the detailed analysis along with the challenges and future research directions.Comment: Accepted in Fifth IAPR International Conference on Computer Vision and Image Processing (CVIP), 202

    Loss re-scaling VQA: Revisiting the LanguagePrior Problem from a Class-imbalance View

    Full text link
    Recent studies have pointed out that many well-developed Visual Question Answering (VQA) models are heavily affected by the language prior problem, which refers to making predictions based on the co-occurrence pattern between textual questions and answers instead of reasoning visual contents. To tackle it, most existing methods focus on enhancing visual feature learning to reduce this superficial textual shortcut influence on VQA model decisions. However, limited effort has been devoted to providing an explicit interpretation for its inherent cause. It thus lacks a good guidance for the research community to move forward in a purposeful way, resulting in model construction perplexity in overcoming this non-trivial problem. In this paper, we propose to interpret the language prior problem in VQA from a class-imbalance view. Concretely, we design a novel interpretation scheme whereby the loss of mis-predicted frequent and sparse answers of the same question type is distinctly exhibited during the late training phase. It explicitly reveals why the VQA model tends to produce a frequent yet obviously wrong answer, to a given question whose right answer is sparse in the training set. Based upon this observation, we further develop a novel loss re-scaling approach to assign different weights to each answer based on the training data statistics for computing the final loss. We apply our approach into three baselines and the experimental results on two VQA-CP benchmark datasets evidently demonstrate its effectiveness. In addition, we also justify the validity of the class imbalance interpretation scheme on other computer vision tasks, such as face recognition and image classification

    A Comparison of Pre-trained Vision-and-Language Models for Multimodal Representation Learning across Medical Images and Reports

    Full text link
    Joint image-text embedding extracted from medical images and associated contextual reports is the bedrock for most biomedical vision-and-language (V+L) tasks, including medical visual question answering, clinical image-text retrieval, clinical report auto-generation. In this study, we adopt four pre-trained V+L models: LXMERT, VisualBERT, UNIER and PixelBERT to learn multimodal representation from MIMIC-CXR radiographs and associated reports. The extrinsic evaluation on OpenI dataset shows that in comparison to the pioneering CNN-RNN model, the joint embedding learned by pre-trained V+L models demonstrate performance improvement in the thoracic findings classification task. We conduct an ablation study to analyze the contribution of certain model components and validate the advantage of joint embedding over text-only embedding. We also visualize attention maps to illustrate the attention mechanism of V+L models.Comment: 10 pages, 3 figures, submitted to BIBM202
    corecore