88 research outputs found

    Fluctuation-dissipation relation and the Edwards entropy for a glassy granular compaction model

    Full text link
    We analytically study a one dimensional compaction model in the glassy regime. Both correlation and response functions are calculated exactly in the evolving dense and low tapping strength limit, where the density relaxes in a 1/lnt1/\ln t fashion. The response and correlation functions turn out to be connected through a non-equilibrium generalisation of the fluctuation-dissipation theorem. The initial response in the average density to an increase in the tapping strength is shown to be negative, while on longer timescales it is shown to be positive. On short time scales the fluctuation-dissipation theorem governs the relation between correlation and response, and we show that such a relationship also exists for the slow degrees of freedom, albeit with a different temperature. The model is further studied within the statistical theory proposed by Edwards and co-workers, and the Edwards entropy is calculated in the large system limit. The fluctuations described by this approach turn out to match the fluctuations as calculated through the dynamical consideration. We believe this to be the first time these ideas have been analytically confirmed in a non-mean-field model.Comment: 4 pages, 3 figure

    What is the temperature of a granular medium?

    Full text link
    In this paper we discuss whether thermodynamical concepts and in particular the notion of temperature could be relevant for the dynamics of granular systems. We briefly review how a temperature-like quantity can be defined and measured in granular media in very different regimes, namely the glassy-like, the liquid-like and the granular gas. The common denominator will be given by the Fluctuation-Dissipation Theorem, whose validity is explored by means of both numerical and experimental techniques. It turns out that, although a definition of a temperature is possible in all cases, its interpretation is far from being obvious. We discuss the possible perspectives both from the theoretical and, more importantly, from the experimental point of view

    Violation of the fluctuation-dissipation theorem in glassy systems: basic notions and the numerical evidence

    Full text link
    This review reports on the research done during the past years on violations of the fluctuation-dissipation theorem (FDT) in glassy systems. It is focused on the existence of a quasi-fluctuation-dissipation theorem (QFDT) in glassy systems and the currently supporting knowledge gained from numerical simulation studies. It covers a broad range of non-stationary aging and stationary driven systems such as structural-glasses, spin-glasses, coarsening systems, ferromagnetic models at criticality, trap models, models with entropy barriers, kinetically constrained models, sheared systems and granular media. The review is divided into four main parts: 1) An introductory section explaining basic notions related to the existence of the FDT in equilibrium and its possible extension to the glassy regime (QFDT), 2) A description of the basic analytical tools and results derived in the framework of some exactly solvable models, 3) A detailed report of the current evidence in favour of the QFDT and 4) A brief digression on the experimental evidence in its favour. This review is intended for inexpert readers who want to learn about the basic notions and concepts related to the existence of the QFDT as well as for the more expert readers who may be interested in more specific results.Comment: 120 pages, 37 figures. Topical review paper . Several typos and misprints corrected, new references included and others updated. to be published in J. Phys. A (Math. Gen.

    On the existence of stationary states during granular compaction

    Full text link
    When submitted to gentle mechanical taps a granular packing slowly compacts until it reaches a stationary state that depends on the tap characteristics. The properties of such stationary states are experimentally investigated. The influence of the initial state, taps properties and tapping protocol are studied. The compactivity of the packings is determinated. Our results strongly support the idea that the stationary states are genuine thermodynamic states.Comment: to be published in EPJE. The original publication will be available at www.europhysj.or

    Glassy systems under time-dependent driving forces: application to slow granular rheology

    Full text link
    We study the dynamics of a glassy model with infinite range interactions externally driven by an oscillatory force. We find a well-defined transition in the (Temperature-Amplitude-Frequency) phase diagram between (i) a `glassy' state characterized by the slow relaxation of one-time quantities, aging in two-time quantities and a modification of the equilibrium fluctuation-dissipation relation; and (ii) a `liquid' state with a finite relaxation time. In the glassy phase, the degrees of freedom governing the slow relaxation are thermalized to an effective temperature. Using Monte-Carlo simulations, we investigate the effect of trapping regions in phase space on the driven dynamics. We find that it alternates between periods of rapid motion and periods of trapping. These results confirm the strong analogies between the slow granular rheology and the dynamics of glasses. They also provide a theoretical underpinning to earlier attempts to present a thermodynamic description of moderately driven granular materials.Comment: Version accepted for publication - Physical Review

    Thermodynamics and Statistical Mechanics of dense granular media

    Full text link
    By detailed Molecular Dynamics and Monte Carlo simulations %of a realistic model we show that granular materials at rest can be described as thermodynamics systems. First we show that granular packs can be characterized by few parameters, as much as fluids or solids. Then, in a second independent step, we demonstrate that these states can be described in terms of equilibrium distributions which coincide with the Statistical Mechanics of powders first proposed by Edwards. We also derive the system equation of state as a function of the ``configurational temperature'', its new intensive thermodynamic parameter.Comment: Supplementary Informations adde

    A Statistical Mechanics Approach to the Inherent States of Granular Media

    Full text link
    We consider a Statistical Mechanics approach to granular systems by following the original ideas developed by Edwards. We use the concept of ``inherent states'', defined as the stable configurations in the potential energy landscape, introduced in the context of glasses. Under simplifying assumptions, the equilibrium inherent states can be characterised by a configurational temperature, 1/β1/\beta. We link β\beta to Edwards' compactivity and address the problem of its experimental measure. We also discuss the possibility to describe the time dependent distribution probability in the inherent states with an appropriate master equation.Comment: revised version in pres

    Statistical Mechanics of jamming and segregation in granular media

    Full text link
    In the framework of schematic hard spheres lattice models we discuss Edwards' Statistical Mechanics approach to granular media. As this approach appears to hold here to a very good approximation, by analytical calculations of Edwards' partition function at a mean field level we derive the system phase diagram and show that ``jamming'' corresponds to a phase transition from a ``fluid'' to a ``glassy'' phase, observed when crystallization is avoided. The nature of such a ``glassy'' phase turns out to be the same found in mean field models for glass formers. In the same context, we also briefly discuss mixing/segregation phenomena of binary mixtures: the presence of fluid-crystal phase transitions drives segregation as a form of phase separation and, within a given phase, gravity can also induce a kind of ``vertical'' segregation, usually not associated to phase transitions.Comment: Contribution to the volume "Unifying Concepts in Granular Media and Glasses", edt.s A. Coniglio, A. Fierro, H. J. Herrmann and M. Nicodem
    corecore