528 research outputs found

    Multilevel MDA-Lite Paris Traceroute

    Full text link
    Since its introduction in 2006-2007, Paris Traceroute and its Multipath Detection Algorithm (MDA) have been used to conduct well over a billion IP level multipath route traces from platforms such as M-Lab. Unfortunately, the MDA requires a large number of packets in order to trace an entire topology of load balanced paths between a source and a destination, which makes it undesirable for platforms that otherwise deploy Paris Traceroute, such as RIPE Atlas. In this paper we present a major update to the Paris Traceroute tool. Our contributions are: (1) MDA-Lite, an alternative to the MDA that significantly cuts overhead while maintaining a low failure probability; (2) Fakeroute, a simulator that enables validation of a multipath route tracing tool's adherence to its claimed failure probability bounds; (3) multilevel multipath route tracing, with, for the first time, a Traceroute tool that provides a router-level view of multipath routes; and (4) surveys at both the IP and router levels of multipath routing in the Internet, showing, among other things, that load balancing topologies have increased in size well beyond what has been previously reported as recently as 2016. The data and the software underlying these results are publicly available.Comment: Preprint. To appear in Proc. ACM Internet Measurement Conference 201

    Resilient availability and bandwidth-aware multipath provisioning for media transfer over the internet (Best Paper Award)

    Get PDF
    Traditional routing in the Internet is best-effort. Path differentiation including multipath routing is a promising technique to be used for meeting QoS requirements of media intensive applications. Since different paths have different characteristics in terms of latency, availability and bandwidth, they offer flexibility in QoS and congestion control. Additionally protection techniques can be used to enhance the reliability of the network. This paper studies the problem of how to optimally find paths ensuring maximal bandwidth and resiliency of media transfer over the network. In particular, we propose two algorithms to reserve network paths with minimal new resources while increasing the availability of the paths and enabling congestion control. The first algorithm is based on Integer Linear Programming which minimizes the cost of the paths and the used resources. The second one is a heuristic-based algorithm which solves the scalability limitations of the ILP approach. The algorithms ensure resiliency against any single link failure in the network. The experimental results indicate that using the proposed schemes the connections availability improve significantly and a more balanced load is achieved in the network compared to the shortest path-based approaches

    A Survey on the Contributions of Software-Defined Networking to Traffic Engineering

    Get PDF
    Since the appearance of OpenFlow back in 2008, software-defined networking (SDN) has gained momentum. Although there are some discrepancies between the standards developing organizations working with SDN about what SDN is and how it is defined, they all outline traffic engineering (TE) as a key application. One of the most common objectives of TE is the congestion minimization, where techniques such as traffic splitting among multiple paths or advanced reservation systems are used. In such a scenario, this manuscript surveys the role of a comprehensive list of SDN protocols in TE solutions, in order to assess how these protocols can benefit TE. The SDN protocols have been categorized using the SDN architecture proposed by the open networking foundation, which differentiates among data-controller plane interfaces, application-controller plane interfaces, and management interfaces, in order to state how the interface type in which they operate influences TE. In addition, the impact of the SDN protocols on TE has been evaluated by comparing them with the path computation element (PCE)-based architecture. The PCE-based architecture has been selected to measure the impact of SDN on TE because it is the most novel TE architecture until the date, and because it already defines a set of metrics to measure the performance of TE solutions. We conclude that using the three types of interfaces simultaneously will result in more powerful and enhanced TE solutions, since they benefit TE in complementary ways.European Commission through the Horizon 2020 Research and Innovation Programme (GN4) under Grant 691567 Spanish Ministry of Economy and Competitiveness under the Secure Deployment of Services Over SDN and NFV-based Networks Project S&NSEC under Grant TEC2013-47960-C4-3-

    Exploiting the power of multiplicity: a holistic survey of network-layer multipath

    Get PDF
    The Internet is inherently a multipath network: For an underlying network with only a single path, connecting various nodes would have been debilitatingly fragile. Unfortunately, traditional Internet technologies have been designed around the restrictive assumption of a single working path between a source and a destination. The lack of native multipath support constrains network performance even as the underlying network is richly connected and has redundant multiple paths. Computer networks can exploit the power of multiplicity, through which a diverse collection of paths is resource pooled as a single resource, to unlock the inherent redundancy of the Internet. This opens up a new vista of opportunities, promising increased throughput (through concurrent usage of multiple paths) and increased reliability and fault tolerance (through the use of multiple paths in backup/redundant arrangements). There are many emerging trends in networking that signify that the Internet's future will be multipath, including the use of multipath technology in data center computing; the ready availability of multiple heterogeneous radio interfaces in wireless (such as Wi-Fi and cellular) in wireless devices; ubiquity of mobile devices that are multihomed with heterogeneous access networks; and the development and standardization of multipath transport protocols such as multipath TCP. The aim of this paper is to provide a comprehensive survey of the literature on network-layer multipath solutions. We will present a detailed investigation of two important design issues, namely, the control plane problem of how to compute and select the routes and the data plane problem of how to split the flow on the computed paths. The main contribution of this paper is a systematic articulation of the main design issues in network-layer multipath routing along with a broad-ranging survey of the vast literature on network-layer multipathing. We also highlight open issues and identify directions for future work

    Segment Routing: a Comprehensive Survey of Research Activities, Standardization Efforts and Implementation Results

    Full text link
    Fixed and mobile telecom operators, enterprise network operators and cloud providers strive to face the challenging demands coming from the evolution of IP networks (e.g. huge bandwidth requirements, integration of billions of devices and millions of services in the cloud). Proposed in the early 2010s, Segment Routing (SR) architecture helps face these challenging demands, and it is currently being adopted and deployed. SR architecture is based on the concept of source routing and has interesting scalability properties, as it dramatically reduces the amount of state information to be configured in the core nodes to support complex services. SR architecture was first implemented with the MPLS dataplane and then, quite recently, with the IPv6 dataplane (SRv6). IPv6 SR architecture (SRv6) has been extended from the simple steering of packets across nodes to a general network programming approach, making it very suitable for use cases such as Service Function Chaining and Network Function Virtualization. In this paper we present a tutorial and a comprehensive survey on SR technology, analyzing standardization efforts, patents, research activities and implementation results. We start with an introduction on the motivations for Segment Routing and an overview of its evolution and standardization. Then, we provide a tutorial on Segment Routing technology, with a focus on the novel SRv6 solution. We discuss the standardization efforts and the patents providing details on the most important documents and mentioning other ongoing activities. We then thoroughly analyze research activities according to a taxonomy. We have identified 8 main categories during our analysis of the current state of play: Monitoring, Traffic Engineering, Failure Recovery, Centrally Controlled Architectures, Path Encoding, Network Programming, Performance Evaluation and Miscellaneous...Comment: SUBMITTED TO IEEE COMMUNICATIONS SURVEYS & TUTORIAL
    corecore