4,550 research outputs found

    Reliable Prediction of Channel Assignment Performance in Wireless Mesh Networks

    Get PDF
    The advancements in wireless mesh networks (WMN), and the surge in multi-radio multi-channel (MRMC) WMN deployments have spawned a multitude of network performance issues. These issues are intricately linked to the adverse impact of endemic interference. Thus, interference mitigation is a primary design objective in WMNs. Interference alleviation is often effected through efficient channel allocation (CA) schemes which fully utilize the potential of MRMC environment and also restrain the detrimental impact of interference. However, numerous CA schemes have been proposed in research literature and there is a lack of CA performance prediction techniques which could assist in choosing a suitable CA for a given WMN. In this work, we propose a reliable interference estimation and CA performance prediction approach. We demonstrate its efficacy by substantiating the CA performance predictions for a given WMN with experimental data obtained through rigorous simulations on an ns-3 802.11g environment.Comment: Accepted in ICACCI-201

    Joint Channel Assignment and Opportunistic Routing for Maximizing Throughput in Cognitive Radio Networks

    Full text link
    In this paper, we consider the joint opportunistic routing and channel assignment problem in multi-channel multi-radio (MCMR) cognitive radio networks (CRNs) for improving aggregate throughput of the secondary users. We first present the nonlinear programming optimization model for this joint problem, taking into account the feature of CRNs-channel uncertainty. Then considering the queue state of a node, we propose a new scheme to select proper forwarding candidates for opportunistic routing. Furthermore, a new algorithm for calculating the forwarding probability of any packet at a node is proposed, which is used to calculate how many packets a forwarder should send, so that the duplicate transmission can be reduced compared with MAC-independent opportunistic routing & encoding (MORE) [11]. Our numerical results show that the proposed scheme performs significantly better that traditional routing and opportunistic routing in which channel assignment strategy is employed.Comment: 5 pages, 4 figures, to appear in Proc. of IEEE GlobeCom 201
    corecore