2,455,075 research outputs found
PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume
We present a compact but effective CNN model for optical flow, called
PWC-Net. PWC-Net has been designed according to simple and well-established
principles: pyramidal processing, warping, and the use of a cost volume. Cast
in a learnable feature pyramid, PWC-Net uses the cur- rent optical flow
estimate to warp the CNN features of the second image. It then uses the warped
features and features of the first image to construct a cost volume, which is
processed by a CNN to estimate the optical flow. PWC-Net is 17 times smaller in
size and easier to train than the recent FlowNet2 model. Moreover, it
outperforms all published optical flow methods on the MPI Sintel final pass and
KITTI 2015 benchmarks, running at about 35 fps on Sintel resolution (1024x436)
images. Our models are available on https://github.com/NVlabs/PWC-Net.Comment: CVPR 2018 camera ready version (with github link to Caffe and PyTorch
code
Application of FDS and firefoam in large eddy simulations of a turbulent buoyant helium plume
Large eddy simulations are conducted in the near-field region of a large turbulent buoyant helium plume. Such plumes are of relevance for fire safety research due to the similar flow features as in the buoyant (smoke) plumes above the fire source. The transient and mean flow dynamics are discussed with and without the use of a Smagorinsky-type subgrid scale (SGS) model. For this purpose, two different computational fluid dynamics (CFD) packages are used. Small-scale structures, formed at the edge of the plume inlet due to a baroclinic and gravitational mechanism and subject to flow instabilities, interact with large-scale features of the flow, resulting in a puffing cycle. This puffing cycle is recovered in the simulations. In general, the LES calculations reproduce the main features of the turbulent plume. Mean velocity results compare well with the experimental data. The mass fractions are overpredicted on the centerline though, and higher on the domain
Recommended from our members
Snow and ice melt flow features on Devon Island, Nunavut, Arctic Canada as possible analogs for recent slope flow features on Mars
Based on morphologic and contextual analogs from Devon Island, Arctic Canada, the recent martian slope flow features reported by Malin and Edgett are reinterpreted as being due not necessarily to groundwater seepage but possibly to snow or ice melt
Flow Fluctuations from Early-Time Correlations in Nuclear Collisions
We propose that flow fluctuations have the same origin as transverse momentum
fluctuations. The common source of these fluctuations is the spatially
inhomogeneous initial state that drives hydrodynamic flow. Longitudinal
correlations from an early Glasma stage followed by hydrodynamic flow
quantitatively account for many features of multiplicity and fluctuation
data. We develop a framework for studying flow and its fluctuations in this
picture. We then compute elliptic and triangular flow fluctuations, and study
their connections to the ridge
A flow paradigm in heavy-ion collisions
The success of hydrodynamics in high energy heavy-ion collisions leads to a
flow paradigm, to understand the observed features of harmonic flow in terms of
the medium collective expansion regarding initial state geometrical properties.
In this review, we present some essential ingredients in the flow paradigm,
including the hydrodynamic modeling, the characterization of initial state
geometry and the medium response relations. The extension of the flow paradigm
to small colliding systems is also discussed.Comment: Typo corrected, new references added. Published version for Chinese
Physics
3D photospheric velocity field of a Supergranular cell
We investigate the plasma flow properties inside a Supergranular (SG) cell,
in particular its interaction with small scale magnetic field structures. The
SG cell has been identified using the magnetic network (CaII wing brightness)
as proxy, applying the Two-Level Structure Tracking (TST) to high spatial,
spectral and temporal resolution observations obtained by IBIS. The full 3D
velocity vector field for the SG has been reconstructed at two different
photospheric heights. In order to strengthen our findings, we also computed the
mean radial flow of the SG by means of cork tracing. We also studied the
behaviour of the horizontal and Line of Sight plasma flow cospatial with
cluster of bright CaII structures of magnetic origin to better understand the
interaction between photospheric convection and small scale magnetic features.
The SG cell we investigated seems to be organized with an almost radial flow
from its centre to the border. The large scale divergence structure is probably
created by a compact region of constant up-flow close to the cell centre. On
the edge of the SG, isolated regions of strong convergent flow are nearby or
cospatial with extended clusters of bright CaII wing features forming the knots
of the magnetic network.Comment: 7 pages, submitted to A&A, referee's comments include
- …
