2,455,075 research outputs found

    PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume

    Full text link
    We present a compact but effective CNN model for optical flow, called PWC-Net. PWC-Net has been designed according to simple and well-established principles: pyramidal processing, warping, and the use of a cost volume. Cast in a learnable feature pyramid, PWC-Net uses the cur- rent optical flow estimate to warp the CNN features of the second image. It then uses the warped features and features of the first image to construct a cost volume, which is processed by a CNN to estimate the optical flow. PWC-Net is 17 times smaller in size and easier to train than the recent FlowNet2 model. Moreover, it outperforms all published optical flow methods on the MPI Sintel final pass and KITTI 2015 benchmarks, running at about 35 fps on Sintel resolution (1024x436) images. Our models are available on https://github.com/NVlabs/PWC-Net.Comment: CVPR 2018 camera ready version (with github link to Caffe and PyTorch code

    Application of FDS and firefoam in large eddy simulations of a turbulent buoyant helium plume

    Get PDF
    Large eddy simulations are conducted in the near-field region of a large turbulent buoyant helium plume. Such plumes are of relevance for fire safety research due to the similar flow features as in the buoyant (smoke) plumes above the fire source. The transient and mean flow dynamics are discussed with and without the use of a Smagorinsky-type subgrid scale (SGS) model. For this purpose, two different computational fluid dynamics (CFD) packages are used. Small-scale structures, formed at the edge of the plume inlet due to a baroclinic and gravitational mechanism and subject to flow instabilities, interact with large-scale features of the flow, resulting in a puffing cycle. This puffing cycle is recovered in the simulations. In general, the LES calculations reproduce the main features of the turbulent plume. Mean velocity results compare well with the experimental data. The mass fractions are overpredicted on the centerline though, and higher on the domain

    Flow Fluctuations from Early-Time Correlations in Nuclear Collisions

    Full text link
    We propose that flow fluctuations have the same origin as transverse momentum fluctuations. The common source of these fluctuations is the spatially inhomogeneous initial state that drives hydrodynamic flow. Longitudinal correlations from an early Glasma stage followed by hydrodynamic flow quantitatively account for many features of multiplicity and ptp_t fluctuation data. We develop a framework for studying flow and its fluctuations in this picture. We then compute elliptic and triangular flow fluctuations, and study their connections to the ridge

    A flow paradigm in heavy-ion collisions

    Full text link
    The success of hydrodynamics in high energy heavy-ion collisions leads to a flow paradigm, to understand the observed features of harmonic flow in terms of the medium collective expansion regarding initial state geometrical properties. In this review, we present some essential ingredients in the flow paradigm, including the hydrodynamic modeling, the characterization of initial state geometry and the medium response relations. The extension of the flow paradigm to small colliding systems is also discussed.Comment: Typo corrected, new references added. Published version for Chinese Physics

    3D photospheric velocity field of a Supergranular cell

    Full text link
    We investigate the plasma flow properties inside a Supergranular (SG) cell, in particular its interaction with small scale magnetic field structures. The SG cell has been identified using the magnetic network (CaII wing brightness) as proxy, applying the Two-Level Structure Tracking (TST) to high spatial, spectral and temporal resolution observations obtained by IBIS. The full 3D velocity vector field for the SG has been reconstructed at two different photospheric heights. In order to strengthen our findings, we also computed the mean radial flow of the SG by means of cork tracing. We also studied the behaviour of the horizontal and Line of Sight plasma flow cospatial with cluster of bright CaII structures of magnetic origin to better understand the interaction between photospheric convection and small scale magnetic features. The SG cell we investigated seems to be organized with an almost radial flow from its centre to the border. The large scale divergence structure is probably created by a compact region of constant up-flow close to the cell centre. On the edge of the SG, isolated regions of strong convergent flow are nearby or cospatial with extended clusters of bright CaII wing features forming the knots of the magnetic network.Comment: 7 pages, submitted to A&A, referee's comments include
    corecore