1,254,178 research outputs found
Simultaneous Stereo Video Deblurring and Scene Flow Estimation
Videos for outdoor scene often show unpleasant blur effects due to the large
relative motion between the camera and the dynamic objects and large depth
variations. Existing works typically focus monocular video deblurring. In this
paper, we propose a novel approach to deblurring from stereo videos. In
particular, we exploit the piece-wise planar assumption about the scene and
leverage the scene flow information to deblur the image. Unlike the existing
approach [31] which used a pre-computed scene flow, we propose a single
framework to jointly estimate the scene flow and deblur the image, where the
motion cues from scene flow estimation and blur information could reinforce
each other, and produce superior results than the conventional scene flow
estimation or stereo deblurring methods. We evaluate our method extensively on
two available datasets and achieve significant improvement in flow estimation
and removing the blur effect over the state-of-the-art methods.Comment: Accepted to IEEE International Conference on Computer Vision and
Pattern Recognition (CVPR) 201
Correlation Flow: Robust Optical Flow Using Kernel Cross-Correlators
Robust velocity and position estimation is crucial for autonomous robot
navigation. The optical flow based methods for autonomous navigation have been
receiving increasing attentions in tandem with the development of micro
unmanned aerial vehicles. This paper proposes a kernel cross-correlator (KCC)
based algorithm to determine optical flow using a monocular camera, which is
named as correlation flow (CF). Correlation flow is able to provide reliable
and accurate velocity estimation and is robust to motion blur. In addition, it
can also estimate the altitude velocity and yaw rate, which are not available
by traditional methods. Autonomous flight tests on a quadcopter show that
correlation flow can provide robust trajectory estimation with very low
processing power. The source codes are released based on the ROS framework.Comment: 2018 International Conference on Robotics and Automation (ICRA 2018
Low flow estimation in Scotland
This report describes the results of a low flow study of Scotland commissioned
by the Scottish Development Department and carried out by the Institute of
Hydrology. The main objective of the study was to improve techniques for
low flow estimation at the ungauged site. The study was based on mean daily
discharge data for 232 stations held on the UK surface water archive. The
authors would like to acknowledge the assistance of the River Purification
Boards of Scotland not only for collecting and processing the data used in the
study, but also for their contnbution to the production of a Base Flow Index
map of Scotland. This report is part of a series of Low Flow Study Reports
the first of which was published by the Institute of Hydrology in 1980
- …
