1,254,178 research outputs found

    Simultaneous Stereo Video Deblurring and Scene Flow Estimation

    Full text link
    Videos for outdoor scene often show unpleasant blur effects due to the large relative motion between the camera and the dynamic objects and large depth variations. Existing works typically focus monocular video deblurring. In this paper, we propose a novel approach to deblurring from stereo videos. In particular, we exploit the piece-wise planar assumption about the scene and leverage the scene flow information to deblur the image. Unlike the existing approach [31] which used a pre-computed scene flow, we propose a single framework to jointly estimate the scene flow and deblur the image, where the motion cues from scene flow estimation and blur information could reinforce each other, and produce superior results than the conventional scene flow estimation or stereo deblurring methods. We evaluate our method extensively on two available datasets and achieve significant improvement in flow estimation and removing the blur effect over the state-of-the-art methods.Comment: Accepted to IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 201

    Correlation Flow: Robust Optical Flow Using Kernel Cross-Correlators

    Full text link
    Robust velocity and position estimation is crucial for autonomous robot navigation. The optical flow based methods for autonomous navigation have been receiving increasing attentions in tandem with the development of micro unmanned aerial vehicles. This paper proposes a kernel cross-correlator (KCC) based algorithm to determine optical flow using a monocular camera, which is named as correlation flow (CF). Correlation flow is able to provide reliable and accurate velocity estimation and is robust to motion blur. In addition, it can also estimate the altitude velocity and yaw rate, which are not available by traditional methods. Autonomous flight tests on a quadcopter show that correlation flow can provide robust trajectory estimation with very low processing power. The source codes are released based on the ROS framework.Comment: 2018 International Conference on Robotics and Automation (ICRA 2018

    Low flow estimation in Scotland

    Get PDF
    This report describes the results of a low flow study of Scotland commissioned by the Scottish Development Department and carried out by the Institute of Hydrology. The main objective of the study was to improve techniques for low flow estimation at the ungauged site. The study was based on mean daily discharge data for 232 stations held on the UK surface water archive. The authors would like to acknowledge the assistance of the River Purification Boards of Scotland not only for collecting and processing the data used in the study, but also for their contnbution to the production of a Base Flow Index map of Scotland. This report is part of a series of Low Flow Study Reports the first of which was published by the Institute of Hydrology in 1980
    corecore