19 research outputs found

    Flow does not model flows up to weak dihomotopy

    Full text link
    We prove that the category of flows cannot be the underlying category of a model category whose corresponding homotopy types are the flows up to weak dihomotopy. Some hints are given to overcome this problem. In particular, a new approach of dihomotopy involving simplicial presheaves over an appropriate small category is proposed. This small category is obtained by taking a full subcategory of a locally presentable version of the category of flows.Comment: v2 16 pages, 3 figures ; updated bibliography + slight improvements and corrections of typos ; v3 only the Journal-ref fiel

    Inverting weak dihomotopy equivalence using homotopy continuous flow

    Full text link
    A flow is homotopy continuous if it is indefinitely divisible up to S-homotopy. The full subcategory of cofibrant homotopy continuous flows has nice features. Not only it is big enough to contain all dihomotopy types, but also a morphism between them is a weak dihomotopy equivalence if and only if it is invertible up to dihomotopy. Thus, the category of cofibrant homotopy continuous flows provides an implementation of Whitehead's theorem for the full dihomotopy relation, and not only for S-homotopy as in previous works of the author. This fact is not the consequence of the existence of a model structure on the category of flows because it is known that there does not exist any model structure on it whose weak equivalences are exactly the weak dihomotopy equivalences. This fact is an application of a general result for the localization of a model category with respect to a weak factorization system.Comment: 22 pages; LaTeX2e ; v2 : corrected bibliography + improvement of the statement of the main theorems ; v3 final version published in http://www.tac.mta.ca/tac

    The homotopy branching space of a flow

    Full text link
    In this talk, I will explain the importance of the homotopy branching space functor (and of the homotopy merging space functor) in dihomotopy theory. The paper is a detailed abstract of math.AT/0304112 and math.AT/0305169.Comment: Expository paper ; 11 pages ; to appear in GETCO'03 proceedin

    Relative directed homotopy theory of partially ordered spaces

    Get PDF
    Algebraic topological methods have been used successfully in concurrency theory, the domain of theoretical computer science that deals with distributed computing. L. Fajstrup, E. Goubault, and M. Raussen have introduced partially ordered spaces (pospaces) as a model for concurrent systems. In this paper it is shown that the category of pospaces under a fixed pospace is both a fibration and a cofibration category in the sense of H. Baues. The homotopy notion in this fibration and cofibration category is relative directed homotopy. It is also shown that the category of pospaces is a closed model category such that the homotopy notion is directed homotopy.Comment: 20 page

    T-homotopy and refinement of observation (II) : Adding new T-homotopy equivalences

    Get PDF
    This paper is the second part of a series of papers about a new notion of T-homotopy of flows. It is proved that the old definition of T-homotopy equivalence does not allow the identification of the directed segment with the 3-dimensional cube. This contradicts a paradigm of dihomotopy theory. A new definition of T-homotopy equivalence is proposed, following the intuition of refinement of observation. And it is proved that up to weak S-homotopy, a old T-homotopy equivalence is a new T-homotopy equivalence. The left-properness of the weak S-homotopy model category of flows is also established in this second part. The latter fact is used several times in the next papers of this series.Comment: 20 pages, 3 figure

    Invariants of directed spaces

    Get PDF

    T-homotopy and refinement of observation (III) : Invariance of the branching and merging homologies

    Full text link
    This series explores a new notion of T-homotopy equivalence of flows. The new definition involves embeddings of finite bounded posets preserving the bottom and the top elements and the associated cofibrations of flows. In this third part, it is proved that the generalized T-homotopy equivalences preserve the branching and merging homology theories of a flow. These homology theories are of interest in computer science since they detect the non-deterministic branching and merging areas of execution paths in the time flow of a higher dimensional automaton. The proof is based on Reedy model category techniques.Comment: 30 pages ; final preprint version before publication ; see http://nyjm.albany.edu:8000/j/2006/Vol12.ht

    Comparing globular complex and flow

    Full text link
    A functor is constructed from the category of globular CW-complexes to that of flows. It allows the comparison of the S-homotopy equivalences (resp. the T-homotopy equivalences) of globular complexes with the S-homotopy equivalences (resp. the T-homotopy equivalences) of flows. Moreover, it is proved that this functor induces an equivalence of categories from the localization of the category of globular CW-complexes with respect to S-homotopy equivalences to the localization of the category of flows with respect to weak S-homotopy equivalences. As an application, we construct the underlying homotopy type of a flow.Comment: 54 pages ; 3 figures ; Second paper corresponding to the content of math.AT/0201252 ; v2 : very minor changes ; v3 : final versio
    corecore