72,548 research outputs found
A broad typology of dry rainforests on the western slopes of New South Wales
Dry rainforests are those communities that have floristic and structural affinities to mesic rainforests and occur in parts of eastern and northern Australia where rainfall is comparatively low and often highly seasonal. The dry rainforests of the western slopes of New South Wales are poorly-understood compared to other dry rainforests in Australia, due to a lack of regional scale studies. This paper attempts to redress this by deriving a broad floristic and structural typology for this vegetation type. Phytogeographical analysis followed full floristic surveys conducted on 400 m2 plots located within dry rainforest across the western slopes of NSW. Cluster analysis and ordination of 208 plots identified six floristic groups. Unlike in some other regional studies of dry rainforest these groups were readily assigned to Webb structural types, based on leaf size classes, leaf retention classes and canopy height. Five community types were described using both floristic and structural data: 1) Ficus rubiginosa–Notelaea microcarpa notophyll vine thicket, 2) Ficus rubiginosa–Alectryon subcinereus–Notelaea microcarpa notophyll vine forest, 3) Elaeodendron australe–Notelaea microcarpa–Geijera parviflora notophyll vine thicket, 4) Notelaea microcarpa– Geijera parviflora–Ehretia membranifolia semi-evergreen vine thicket, and 5) Cadellia pentastylis low microphyll vine forest. Floristic groupings were consistent with those described by previous quantitative studies which examined smaller portions of this study area. There was also general agreement between the present analytical study and a previous intuitive classification of dry rainforest vegetation throughout the study area, but little concurrence with a continental scale floristic classification of rainforest
Efficient plot-based floristic assessment of tropical forests
The tropical flora remains chronically understudied and the lack of floristic understanding hampers ecological research and its application for large-scale conservation planning. Given scarce resources and the scale of the challenge there is a need to maximize the efficiency of both sampling strategies and sampling units, yet there is little information on the relative efficiency of different approaches to floristic assessment in tropical forests. This paper is the first attempt to address this gap. We repeatedly sampled forests in two regions of Amazonia using the two most widely used plot-based protocols of floristic sampling, and compared their performance in terms of the quantity of floristic knowledge and ecological insight gained scaled to the field effort required. Specifically, the methods are assessed first in terms of the number of person-days required to complete each sample (‘effort’), secondly by the total gain in the quantity of floristic information that each unit of effort provides (‘crude inventory efficiency’), and thirdly in terms of the floristic information gained as a proportion of the target species pool (‘proportional inventory efficiency’). Finally, we compare the methods in terms of their efficiency in identifying different ecological patterns within the data (‘ecological efficiency’) while controlling for effort. There are large and consistent differences in the performance of the two methods. The disparity is maintained even after accounting for regional and site-level variation in forest species richness, tree density and the number of field assistants. We interpret our results in the context of selecting the appropriate method for particular research purposes
Does the altitude affect the stability of montane forests? A study in the Kahuzi-Biega National Park (Democratic Republic of the Congo)
To understand the functioning of montane forests, this study was conducted in the highlands of the Kahuzi-Biega National Park in the Democratic Republicof the Congo. The relationship between thealtitude andthe floristic stability of woody layers and regeneration capability of canopy species after many yearsofdisturbance was studied. Ten 1-ha plots were established from 1935m to 2760m a.s.l. In each plot we inventoried the trees ≥10cm of diameter at breast height (DBH), separating a canopy layer (10% of the tallest trees) and an understorey layer (all the other trees). In each plot, we nested a 0.1 ha subplot to inventory the saplings between 1 and 10 cm DBH. We found that the Jaccard index of dissimilarity between the understorey layer and the canopy layer decreases with the altitude. The proportion of species which arewell represented in the three layers increases with the altitude.The number of pioneer species decreases with the altitude while that of non-pioneer and shade tolerant species increases. These findings suggest that altitude influences the stability of highland forests, higheraltitudebeing more stable than lower ones in the case of this study
Actual State and Changes of Flora and Vegetation in the Broczówka Steppe Reserve
This paper presents floristic characterization of xerothermic plant associations and analysis of changes of flora within Broczówka steppe reserve. The floristic research was carried out in 2004-2009. Numerous species that were noted here almost 30 years ago were not found in the present study, the size of other populations decreased. Nevertheless, many plant species occurring in the reserve are rare, endangered or protected. Six major plant associations, impoverished form of two ones and one plant community are distinguished in the whole area of the reserve. Occurrence of two plant associations was not confirmed
Distribution, habitat preferences and population sizes of two threatened tree ferns, Cyathea cunninghamii and Cyathea x marcescens, in south-eastern Australia
The distribution, population sizes and habitat preferences of the rare tree ferns Cyathea cunninghamii Hook.f. (Slender Tree Fern) and F1 hybrid Cyathea x marcescens N.A.Wakef. (Skirted Tree Fern) in south-eastern Australia are described, together with the extension of the known distribution range of Cyathea cunninghamii from eastern Victoria into south-eastern New South Wales. Floristic and ecological data, encompassing most of the known habitat types, vegetation associations and population sizes, were collected across 120 locations. Additional information was sought from literature reviews, herbarium collections and field surveys of extant populations.
Cyathea cunninghamii is widespread, with the majority of populations occurring in Tasmania and Victoria, one population in south-eastern NSW and a disjunct population in south-eastern Queensland; Cyathea x marcescens is confined to south and eastern Victoria and south and north eastern Tasmania. Both taxa occur on King Island in Bass Strait. Both taxa have a near coastal distribution with most populations occurring in sub-coastal hinterland and escarpment forests with a median altitude of 288 m. Hierarchical cluster analysis of floristic data across the species’ geographic range identified six vegetation communities ranging from rainforest to damp sclerophyll forest. Their micro-habitat preferences were consistently identified as steeply incised gullies of minor headwater streams of coastal and sub-coastal ranges with a plentiful moisture regime and geomorphic protection from extreme stream flow events, flooding and bank scouring. Sporophyte recruitment was associated with exposed soil of stream banks and edges of constructed walking tracks.
Population sizes of both taxa are small with the majority of populations consisting of less than five adult individuals, with total populations of Cyathea cunninghamii and Cyathea x marcescens estimated at 919 and 221 mature individuals respectively.
Population extinctions in Victoria and Tasmania have primarily been associated with outlier populations in regions subject to agricultural land clearance, habitat modification and changes to fire regimes in crown forests. Nonanthropogenic mortality was associated with land slips, tree falls and stream bank scouring by flood water. Conservation of the hybrid Cyathea x marcescens necessitates the preservation of habitats where both Cyathea cunninghamii and Cyathea australis occur in close proximity to substrates suitable for spore germination. In future, molecular techniques may prove useful for field identification of juvenile stages, facilitating selection of progeny of Cyathea cunninghamii and Cyathea x marcescens for cultivation and re-introduction to sites of previous or possible future extinctions
Wallum on the Nabiac Pleistocene barriers, lower North Coast of New South Wales
Wallum is widespread on coastal dunefields, beach ridge plains and associated sandy flats in northern NSW and southern Queensland. These sand masses contain large aquifers, and the wallum ecosystem is considered to be generally groundwater-dependent. This study describes the floristic composition and environmental relations of wallum on a Pleistocene barrier system at Nabiac (32˚ 09’S 152˚ 26’E), on the lower North Coast of NSW. Despite their minimal elevation and degraded relief, the Nabiac barriers maintain floristic patterns related to topography and hence groundwater relations. Comparative analyses identified the Nabiac wallum as representative of the ecosystem throughout large parts of its range in eastern Australia. The Nabiac wallum and nearby estuarine and alluvial vegetation supports species and communities of conservation significance. A borefield is proposed for development on the Nabiac barriers, thereby providing a valuable opportunity for research into mechanisms of groundwater utilisation by the wallum ecosystem
Floristic response to urbanization: Filtering of the bioregional flora in Indianapolis, Indiana, USA
PREMISE OF THE STUDY: Globally, urban plant populations are becoming increasingly important, as these plants play a vital role in ameliorating effects of ecosystem disturbance and climate change. Urban environments act as filters to bioregional flora, presenting survival challenges to spontaneous plants. Yet, because of the paucity of inventory data on plants in landscapes both before and after urbanization, few studies have directly investigated this effect of urbanization. METHODS: We used historical, contemporary, and regional plant species inventories for Indianapolis, Indiana USA to evaluate how urbanization filters the bioregional flora based on species diversity, functional traits, and phylogenetic community structure. KEY RESULTS: Approximately 60% of the current regional flora was represented in the Indianapolis flora, both historically and presently. Native species that survived over time were significantly different in growth form, life form, and dispersal and pollination modes than those that were extirpated. Phylogenetically, the historical flora represented a random sample of the regional flora, while the current urban flora represented a nonrandom sample. Both graminoid habit and abiotic pollination are significantly more phylogenetically conserved than expected. CONCLUSIONS: Our results likely reflect the shift from agricultural cover to built environment, coupled with the influence of human preference, in shaping the current urban flora of Indianapolis. Based on our analyses, the urban environment of Indianapolis does filter the bioregional species pool. To the extent that these filters are shared by other cities and operate similarly, we may see increasingly homogenized urban floras across regions, with concurrent loss of evolutionary information
Floristics of the South American Páramo moss flora
The South American paramos appeared in Pliocene times and persist to the present day. The moss flora of this habitat consists of an estimated 400 species that comprise 8 floristic groups. In Venezuela these groups and their percent representation are as follows: neotropical 37%, Andean 26%, cosmopolitan 18%, Andean-African 8%, neotropical-Asiatic 3%, neotropical-Australasian 2%, temperate Southern Hemisphere 2% and northern boreal-temperate 2%. Acrocarpous taxa outnumber pleurocarps by nearly 3:1. The neotropical and Andean floristic stocks likely were present prior to late Pliocene orogenies that elevated the cordillera above climatic timberlines. These species may have existed in open, marshy areas (paramillos) or may have evolved from cloud forest ancestors. Taxa of northern boreal- temperate affinities, including those with Asiatic distributions, probably arrived in the paramos during the Pleistocene, a period which may also have seen the establishment in the Northern Andes of some cosmopolitan elements. Species with temperate Southern Hemisphere and Australasian affinities likely spread first to austral South America thence migrated northward during a cool, moist interval sometime over the past 2.5-3 million years or may have become established in the paramos as a result of long- distance dispersal
- …
