115 research outputs found

    Tail motion model identification for control design of an unmanned helicopter

    Get PDF
    This paper explains the methodology developed to design the yaw control system (heading control system) of the α-SAC UAV. The problem of modeling and controlling the tail motion of this UAV along a desired trajectory is considered. First, the response data of the system are collected during special flight test and a linear time invariant model is extracted by identification techniques. Then, the control system is designed and implemented using a PID feedback/feedforward control method. The technique is tested in simulation and validated in the autonomous flight of the small scale helicopter.Peer ReviewedPostprint (published version

    Automatic Landing of a Rotary-Wing UAV in Rough Seas

    Full text link
    Rotary-wing unmanned aerial vehicles (RUAVs) have created extensive interest in the past few decades due to their unique manoeuverability and because of their suitability in a variety of flight missions ranging from traffic inspection to surveillance and reconnaissance. The ability of a RUAV to operate from a ship in the presence of adverse winds and deck motion could greatly extend its applications in both military and civilian roles. This requires the design of a flight control system to achieve safe and reliable automatic landings. Although ground-based landings in various scenarios have been investigated and some satisfactory flight test results are obtained, automatic shipboard recovery is still a dangerous and challenging task. Also, the highly coupled and inherently unstable flight dynamics of the helicopter exacerbate the difficulty in designing a flight control system which would enable the RUAV to attenuate the gust effect. This thesis makes both theoretical and technical contributions to the shipboard recovery problem of the RUAV operating in rough seas. The first main contribution involves a novel automatic landing scheme which reduces time, cost and experimental resources in the design and testing of the RUAV/ship landing system. The novelty of the proposed landing system enables the RUAV to track slow-varying mean deck height instead of instantaneous deck motion to reduce vertical oscillations. This is achieved by estimating the mean deck height through extracting dominant modes from the estimated deck displacement using the recursive Prony Analysis procedure. The second main contribution is the design of a flight control system with gust-attenuation and rapid position tracking capabilities. A feedback-feedforward controller has been devised for height stabilization in a windy environment based on the construction of an effective gust estimator. Flight tests have been conducted to verify its performance, and they demonstrate improved gust-attenuation capability in the RUAV. The proposed feedback-feedforward controller can dynamically and synchronously compensate for the gust effect. In addition, a nonlinear H1 controller has been designed for horizontal position tracking which shows rapid position tracking performance and gust-attenuation capability when gusts occur. This thesis also contains a description of technical contributions necessary for a real-time evaluation of the landing system. A high-infedlity simulation framework has been developed with the goal of minimizing the number of iterations required for theoretical analysis, simulation verification and flight validation. The real-time performance of the landing system is assessed in simulations using the C-code, which can be easily transferred to the autopilot for flight tests. All the subsystems are parameterized and can be extended to different RUAV platforms. The integration of helicopter flight dynamics, flapping dynamics, ship motion, gust effect, the flight control system and servo dynamics justifies the reliability of the simulation results. Also, practical constraints are imposed on the simulation to check the robustness of the flight control system. The feasibility of the landing procedure is confimed for the Vario helicopter using real-time ship motion data

    Wind Preview-Based Model Predictive Control of Multi-Rotor UAVs Using LiDAR

    Get PDF
    Autonomous outdoor operations of Unmanned Aerial Vehicles (UAVs), such as quadrotors, expose the aircraft to wind gusts causing a significant reduction in their position-holding performance. This vulnerability becomes more critical during the automated docking of these vehicles to outdoor charging stations. Utilising real-time wind preview information for the gust rejection control of UAVs has become more feasible due to the advancement of remote wind sensing technology such as LiDAR. This work proposes the use of a wind-preview-based Model Predictive Controller (MPC) to utilise remote wind measurements from a LiDAR for disturbance rejection. Here a ground-based LiDAR unit is used to predict the incoming wind disturbance at the takeoff and landing site of an autonomous quadrotor UAV. This preview information is then utilised by an MPC to provide the optimal compensation over the defined horizon. Simulations were conducted with LiDAR data gathered from field tests to verify the efficacy of the proposed system and to test the robustness of the wind-preview-based control. The results show a favourable improvement in the aircraft response to wind gusts with the addition of wind preview to the MPC; An 80% improvement in its position-holding performance combined with reduced rotational rates and peak rotational angles signifying a less aggressive approach to increased performance when compared with only feedback based MPC disturbance rejection. System robustness tests demonstrated a 1.75 s or 120% margin in the gust preview’s timing or strength respectively before adverse performance impact. The addition of wind-preview to an MPC has been shown to increase the gust rejection of UAVs over standard feedback-based MPC thus enabling their precision landing onto docking stations in the presence of wind gusts

    Unmanned Rotorcraft In Aggressive Environment: Aerodynamic Flow Performance Against Wind Gust

    Get PDF
    Unmanned rotary-wing aircrafts or rotorcrafts are often prone to diverse atmospheric turbulences, and undeniably, abrupt gusts are reckoned to be the most acquainted commotion of them. Time and again, gust turbulence have dictated being the regulating trigger for countless mishaps concerning micro aerial vehicles. Given that the core/main rotor provides principal lift along with governing directional control and dynamic stability for any rotorcraft, the demeanors of thrust or induced air-flow through the gyrating blades largely signify the barebones of its functionality. This paper presents an idiosyncratic approach towards reviewing the impact of wind gust on rotor induced aerodynamic flow performance of an unmanned rotorcraft. Artificial gusts have been generated through the inherent concept of forced pitched oscillation without the use of any conventional wind tunnel. Gust air-speed and the rotor induced air-speed are gauged through the same contraption to provide homogeneous quantitative valuation. Each rotor-halves have been assessed `root-to-tip' across designated span-wise positions against selected strengths of gust. Comparative analysis with normal atmospheric condition indicated gradual loss of cumulative thrust during hover (15-40%) and forward flight (10-30%) within the stipulated gust range and infers the risk of declining altitude. Protuberant imbalance of thrust across the rotor disk during hover indicated the likelihood of lackadaisical half-pitched rolling motion. However, during forward flight, the reduced discrepancy of thrust between the rotor halves signified gradual loss of cruising speed with regards to the increasing gust strength for the specific rotorcraft model. Experimental findings in this study exhibited prospect of appraisal with full-scale rotorcrafts

    Automatic Flight Control Systems

    Get PDF
    The history of flight control is inseparably linked to the history of aviation itself. Since the early days, the concept of automatic flight control systems has evolved from mechanical control systems to highly advanced automatic fly-by-wire flight control systems which can be found nowadays in military jets and civil airliners. Even today, many research efforts are made for the further development of these flight control systems in various aspects. Recent new developments in this field focus on a wealth of different aspects. This book focuses on a selection of key research areas, such as inertial navigation, control of unmanned aircraft and helicopters, trajectory control of an unmanned space re-entry vehicle, aeroservoelastic control, adaptive flight control, and fault tolerant flight control. This book consists of two major sections. The first section focuses on a literature review and some recent theoretical developments in flight control systems. The second section discusses some concepts of adaptive and fault-tolerant flight control systems. Each technique discussed in this book is illustrated by a relevant example

    Modelling and control of a twin rotor MIMO system.

    Get PDF
    In this research, a laboratory platform which has 2 degrees of freedom (DOF), the Twin Rotor MIMO System (TRMS), is investigated. Although, the TRMS does not fly, it has a striking similarity with a helicopter, such as system nonlinearities and cross-coupled modes. Therefore, the TRMS can be perceived as an unconventional and complex "air vehicle" that poses formidable challenges in modelling, control design and analysis and implementation. These issues are the subject of this work. The linear models for 1 and 2 DOFs are obtained via system identification techniques. Such a black-box modelling approach yields input-output models with neither a priori defined model structure nor specific parameter settings reflecting any physical attributes. Further, a nonlinear model using Radial Basis Function networks is obtained. Such a high fidelity nonlinear model is often required for nonlinear system simulation studies and is commonly employed in the aerospace industry. Modelling exercises were conducted that included rigid as well as flexible modes of the system. The approach presented here is shown to be suitable for modelling complex new generation air vehicles. Modelling of the TRMS revealed the presence of resonant system modes which are responsible for inducing unwanted vibrations. In this research, open-loop, closed-loop and combined open and closed-loop control strategies are investigated to address this problem. Initially, open-loop control techniques based on "input shaping control" are employed. Digital filters are then developed to shape the command signals such that the resonance modes are not overly excited. The effectiveness of this concept is then demonstrated on the TRMS rig for both 1 and 2 DOF motion, with a significant reduction in vibration. The linear model for the 1 DOF (SISO) TRMS was found to have the non-minimum phase characteristics and have 4 states with only pitch angle output. This behaviour imposes certain limitations on the type of control topologies one can ado·pt. The LQG approach, which has an elegant structure with an embedded Kalman filter to estimate the unmeasured states, is adopted in this study. The identified linear model is employed in the design of a feedback LQG compensator for the TRMS with 1 DOF. This is shown to have good tracking capability but requires. high control effort and has inadequate authority over residual vibration of the system. These problems are resolved by further augmenting the system with a command path prefilter. The combined feedforward and feedback compensator satisfies the performance objectives and obeys the constraint on the actuator. Finally, 1 DOF controller is implemented on the laboratory platform

    Design and application of advanced disturbance rejection control for small fixed-wing UAVs

    Get PDF
    Small Unmanned Aerial Vehicles (UAVs) have seen continual growth in both research and commercial applications. Attractive features such as their small size, light weight and low cost are a strong driver of this growth. However, these factors also bring about some drawbacks. The light weight and small size means that small UAVs are far more susceptible to performance degradation from factors such as wind gusts. Due to the generally low cost, available sensors are somewhat limited in both quality and available measurements. For example, it is very unlikely that angle of attack is sensed by a small UAV. These aircraft are usually constructed by the end user, so a tangible amount of variation will exist between different aircraft of the same type. Depending on application, additional variation between flights from factors such as battery placement or additional sensors may exist. This makes the application of optimal model based control methods difficult. Research literature on the topic of small UAV control is very rich in regard to high level control, such as path planning in wind. A common assumption in such literature is the existence of a low level control method which is able to track demanded aircraft attitudes to complete a task. Design of such controllers in the presence of significant wind or modelling errors (factors collectively addressed as lumped disturbances herein) is rarely considered. Disturbance Observer Based Control (DOBC) is a means of improving the robustness of a baseline feedback control scheme in the presence of lumped disturbances. The method allows for the rejection of the influence of unmeasurable disturbances much more quickly than traditional integral control, while also enabling recovery of nominal feedback con- trol performance. The separation principle of DOBC allows for the design of a nominal feedback controller, which does not need to be robust against disturbances. A DOBC augmentation can then be applied to ensure this nominal performance is maintained even in the presence of disturbances. This method offers highly attractive properties for control design, and has seen a large rise in popularity in recent years. Current literature on this subject is very often conducted purely in simulation. Ad- ditionally, very advanced versions of DOBC control are now being researched. To make the method attractive to small UAV operators, it would be beneficial if a simple DOBC design could be used to realise the benefits of this method, as it would be more accessible and applicable by many. This thesis investigates the application of a linear state space disturbance observer to low level flight control of a small UAV, along with developments of the method needed to achieve good performance in flight testing. Had this work been conducted purely in simulation, it is likely many of the difficulties encountered would not have been addressed or discovered. This thesis presents four main contributions. An anti-windup method has been devel- oped which is able to alleviate the effect of control saturation on the disturbance observer dynamics. An observer is designed which explicitly considers actuator dynamics. This development was shown to enable faster observer estimation dynamics, yielding better disturbance rejection performance. During initial flight testing, a significant aeroelastic oscillation mode was discovered. This issue was studied in detail theoretically, with a pro- posed solution developed and applied. The solution was able to fully alleviate the effect in flight. Finally, design and development of an over-actuated DOBC method is presented. A method for design of DOBC for over actuated systems was developed and studied. The majority of results in this thesis are demonstrated with flight test data

    Advanced control for miniature helicopters : modelling, design and flight test

    Get PDF
    Unmanned aerial vehicles (UAV) have been receiving unprecedented development during the past two decades. Among different types of UAVs, unmanned helicopters exhibit promising features gained from vertical-takeoff-and-landing, which make them as a versatile platform for both military and civil applications. The work reported in this thesis aims to apply advanced control techniques, in particular model predictive control (MPC), to an autonomous helicopter in order to enhance its performance and capability. First, a rapid prototyping testbed is developed to enable indoor flight testing for miniature helicopters. This testbed is able to simultaneously observe the flight state, carry out complicated algorithms and realtime control of helicopters all in a Matlab/Simulink environment, which provides a streamline process from algorithm development, simulation to flight tests. Next, the modelling and system identification for small-scale helicopters are studied. A parametric model is developed and the unknown parameters are estimated through the designed identification process. After a mathematical model of the selected helicopter is available, three MPC based control algorithms are developed focusing on different aspects in the operation of autonomous helicopters. The first algorithm is a nonlinear MPC framework. A piecewise constant scheme is used in the MPC formulation to reduce the intensive computation load. A two-level framework is suggested where the nonlinear MPC is combined with a low-level linear controller to allow its application on the systems with fast dynamics. The second algorithm solves the local path planning and the successive tracking control by using nonlinear and linear MPC, respectively. The kinematics and obstacle information are incorporated in the path planning, and the linear dynamics are used to design a flight controller. A guidance compensator dynamically links the path planner and flight controller. The third algorithm focuses on the further reduction of computational load in a MPC scheme and the trajectory tracking control in the presence of uncertainties and disturbances. An explicit nonlinear MPC is developed for helicopters to avoid online optimisation, which is then integrated with a nonlinear disturbance observer to significantly improve its robustness and disturbance attenuation. All these algorithms have been verified by flight tests for autonomous helicopters in the dedicated rapid prototyping testbed developed in this thesis.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Hybrid active force control for fixed based rotorcraft

    Get PDF
    Disturbances are considered major challenges faced in the deployment of rotorcraft unmanned aerial vehicle (UAV) systems. Among different types of rotorcraft systems, the twin-rotor helicopter and quadrotor models are considered the most versatile flying machines nowadays due to their range of applications in the civilian and military sectors. However, these systems are multivariate and highly non-linear, making them difficult to be accurately controlled. Their performance could be further compromised when they are operated in the presence of disturbances or uncertainties. This dissertation presents an innovative hybrid control scheme for rotorcraft systems to improve disturbance rejection capability while maintaining system stability, based on a technique called active force control (AFC) via simulation and experimental works. A detailed dynamic model of each aerial system was derived based on the Euler–Lagrange and Newton-Euler methods, taking into account various assumptions and conditions. As a result of the derived models, a proportional-integral-derivative (PID) controller was designed to achieve the required altitude and attitude motions. Due to the PID's inability to reject applied disturbances, the AFC strategy was incorporated with the designed PID controller, to be known as the PID-AFC scheme. To estimate control parameters automatically, a number of artificial intelligence algorithms were employed in this study, namely the iterative learning algorithm and fuzzy logic. Intelligent rules of these AI algorithms were designed and embedded into the AFC loop, identified as intelligent active force control (IAFC)-based methods. This involved, PID-iterative learning active force control (PID-ILAFC) and PID-fuzzy logic active force control (PID-FLAFC) schemes. To test the performance and robustness of these proposed hybrid control systems, several disturbance models were introduced, namely the sinusoidal wave, pulsating, and Dryden wind gust model disturbances. Integral square error was selected as the index performance to compare between the proposed control schemes. In this study, the effectiveness of the PID-ILAFC strategy in connection with the body jerk performance was investigated in the presence of applied disturbance. In terms of experimental work, hardware-in-the-loop (HIL) experimental tests were conducted for a fixed-base rotorcraft UAV system to investigate how effective are the proposed hybrid PID-ILAFC schemes in disturbance rejection. Simulated results, in time domains, reveal the efficacy of the proposed hybrid IAFC-based control methods in the cancellation of different applied disturbances, while preserving the stability of the rotorcraft system, as compared to the conventional PID controller. In most of the cases, the simulated results show a reduction of more than 55% in settling time. In terms of body jerk performance, it was improved by around 65%, for twin-rotor helicopter system, and by a 45%, for quadrotor system. To achieve the best possible performance, results recommend using the full output signal produced by the AFC strategy according to the sensitivity analysis. The HIL experimental tests results demonstrate that the PID-ILAFC method can improve the disturbance rejection capability when compared to other control systems and show good agreement with the simulated counterpart. However, the selection of the appropriate learning parameters and initial conditions is viewed as a crucial step toward this improved performance

    A state-of-the-art assessment of active structures

    Get PDF
    A state-of-the-art assessment of active structures with emphasis towards the applications in aeronautics and space is presented. It is felt that since this technology area is growing at such a rapid pace in many different disciplines, it is not feasible to cover all of the current research but only the relevant work as relates to aeronautics and space. Research in smart actuation materials, smart sensors, and control of smart/intelligent structures is covered. In smart actuation materials, piezoelectric, magnetostrictive, shape memory, electrorheological, and electrostrictive materials are covered. For sensory materials, fiber optics, dielectric loss, and piezoelectric sensors are examined. Applications of embedded sensors and smart sensors are discussed
    corecore