3,599 research outputs found

    Sparse Signal Processing Concepts for Efficient 5G System Design

    Full text link
    As it becomes increasingly apparent that 4G will not be able to meet the emerging demands of future mobile communication systems, the question what could make up a 5G system, what are the crucial challenges and what are the key drivers is part of intensive, ongoing discussions. Partly due to the advent of compressive sensing, methods that can optimally exploit sparsity in signals have received tremendous attention in recent years. In this paper we will describe a variety of scenarios in which signal sparsity arises naturally in 5G wireless systems. Signal sparsity and the associated rich collection of tools and algorithms will thus be a viable source for innovation in 5G wireless system design. We will discribe applications of this sparse signal processing paradigm in MIMO random access, cloud radio access networks, compressive channel-source network coding, and embedded security. We will also emphasize important open problem that may arise in 5G system design, for which sparsity will potentially play a key role in their solution.Comment: 18 pages, 5 figures, accepted for publication in IEEE Acces

    CogCell: Cognitive Interplay between 60GHz Picocells and 2.4/5GHz Hotspots in the 5G Era

    Full text link
    Rapid proliferation of wireless communication devices and the emergence of a variety of new applications have triggered investigations into next-generation mobile broadband systems, i.e., 5G. Legacy 2G--4G systems covering large areas were envisioned to serve both indoor and outdoor environments. However, in the 5G-era, 80\% of overall traffic is expected to be generated in indoors. Hence, the current approach of macro-cell mobile network, where there is no differentiation between indoors and outdoors, needs to be reconsidered. We envision 60\,GHz mmWave picocell architecture to support high-speed indoor and hotspot communications. We envisage the 5G indoor network as a combination of-, and interplay between, 2.4/5\,GHz having robust coverage and 60\,GHz links offering high datarate. This requires an intelligent coordination and cooperation. We propose 60\,GHz picocellular network architecture, called CogCell, leveraging the ubiquitous WiFi. We propose to use 60\,GHz for the data plane and 2.4/5GHz for the control plane. The hybrid network architecture considers an opportunistic fall-back to 2.4/5\,GHz in case of poor connectivity in the 60\,GHz domain. Further, to avoid the frequent re-beamforming in 60\,GHz directional links due to mobility, we propose a cognitive module -- a sensor-assisted intelligent beam switching procedure -- which reduces the communication overhead. We believe that the CogCell concept will help future indoor communications and possibly outdoor hotspots, where mobile stations and access points collaborate with each other to improve the user experience.Comment: 14 PAGES in IEEE Communications Magazine, Special issue on Emerging Applications, Services and Engineering for Cognitive Cellular Systems (EASE4CCS), July 201

    MmWave Massive MIMO Based Wireless Backhaul for 5G Ultra-Dense Network

    Get PDF
    Ultra-dense network (UDN) has been considered as a promising candidate for future 5G network to meet the explosive data demand. To realize UDN, a reliable, Gigahertz bandwidth, and cost-effective backhaul connecting ultra-dense small-cell base stations (BSs) and macro-cell BS is prerequisite. Millimeter-wave (mmWave) can provide the potential Gbps traffic for wireless backhaul. Moreover, mmWave can be easily integrated with massive MIMO for the improved link reliability. In this article, we discuss the feasibility of mmWave massive MIMO based wireless backhaul for 5G UDN, and the benefits and challenges are also addressed. Especially, we propose a digitally-controlled phase-shifter network (DPSN) based hybrid precoding/combining scheme for mmWave massive MIMO, whereby the low-rank property of mmWave massive MIMO channel matrix is leveraged to reduce the required cost and complexity of transceiver with a negligible performance loss. One key feature of the proposed scheme is that the macro-cell BS can simultaneously support multiple small-cell BSs with multiple streams for each smallcell BS, which is essentially different from conventional hybrid precoding/combining schemes typically limited to single-user MIMO with multiple streams or multi-user MIMO with single stream for each user. Based on the proposed scheme, we further explore the fundamental issues of developing mmWave massive MIMO for wireless backhaul, and the associated challenges, insight, and prospect to enable the mmWave massive MIMO based wireless backhaul for 5G UDN are discussed.Comment: This paper has been accepted by IEEE Wireless Communications Magazine. This paper is related to 5G, ultra-dense network (UDN), millimeter waves (mmWave) fronthaul/backhaul, massive MIMO, sparsity/low-rank property of mmWave massive MIMO channels, sparse channel estimation, compressive sensing (CS), hybrid digital/analog precoding/combining, and hybrid beamforming. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=730653

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed
    • …
    corecore