21,279 research outputs found

    Flexible Support of Team Processes by Adaptive Workflow Systems

    Full text link

    BPM News - Folge 3

    Get PDF
    Die BPM-Kolumne des EMISA-Forums berichtet über aktuelle Themen, Projekte und Veranstaltungen aus dem BPM-Umfeld. Schwerpunkt der vorliegenden Kolumne bildet das Thema Standardisierung von Prozessbeschreibungssprachen und -notationen im Allgemeinen und BPEL4WS (Business Process Execution Language for Web Services) im Speziellen. Hierzu liefert Jan Mendling von der Wirtschaftsuniversität Wien in aktuelles Schlagwort. Des weiteren erhalten Leser eine Zusammenfassung zweier im ersten Halbjahr 2006 veranstalteten Workshops zu den Themen „Flexibilität prozessorientierter Informationssysteme“ und „Kollaborative Prozesse“ sowie einen BPM Veranstaltungskalender für die 2. Jahreshälfte 2006

    ADEPT2 - Next Generation Process Management Technology

    Get PDF
    If current process management systems shall be applied to a broad spectrum of applications, they will have to be significantly improved with respect to their technological capabilities. In particular, in dynamic environments it must be possible to quickly implement and deploy new processes, to enable ad-hoc modifications of single process instances at runtime (e.g., to add, delete or shift process steps), and to support process schema evolution with instance migration, i.e., to propagate process schema changes to already running instances. These requirements must be met without affecting process consistency and by preserving the robustness of the process management system. In this paper we describe how these challenges have been addressed and solved in the ADEPT2 Process Management System. Our overall vision is to provide a next generation process management technology which can be used in a variety of application domains

    A Typology of Virtual Teams: Implications for Effective Leadership

    Get PDF
    As the nature of work in today\u27s organizations becomes more complex, dynamic, and global, there has been an increasing emphasis on far-flung, distributed, virtual teams as organizing units of work. Despite their growing prevalence, relatively little is known about this new form of work unit. The purpose of this paper is to present a theoretical framework to focus research toward understanding virtual teams and, in particular, to identify implications for effective leadership. Specifically, we focus on delineating the dimensions of a typology to characterize different types of virtual teams. First, we distinguish virtual teams from conventional teams to identify where current knowledge applies and new research needs to be developed. Second, we distinguish among different types of virtual teams, considering the critical role of task complexity in determining the underlying characteristics of virtual teams and leadership challenges the different types entail. Propositions addressing leadership implications for the effective management of virtual teams are proposed and discussed

    Universal Resource Lifecycle Management

    Get PDF
    This paper presents a model and a tool that allows Web users to define, execute, and manage lifecycles for any artifact available on the Web. In the paper we show the need for lifecycle management of Web artifacts, and we show in particular why it is important that non-programmers are also able to do this. We then discuss why current models do not allow this, and we present a model and a system implementation that achieves lifecycle management for any URI-identifiable and accessible object. The most challenging parts of the work lie in the definition of a simple but universal model and system (and in particular in allowing universality and simplicity to coexist) and in the ability to hide from the lifecycle modeler the complexity intrinsic in having to access and manage a variety of resources, which differ in nature, in the operations that are allowed on them, and in the protocols and data formats required to access them

    CrossFlow: Cross-Organizational Workflow Management for Service Outsourcing in Dynamic Virtual Enterprises

    Get PDF
    In this report, we present the approach to cross-organizational workflow management of the CrossFlow project. CrossFlow is a European research project aiming at the support of cross-organizational workflows in dynamic virtual enterprises. The cooperation in these virtual enterprises is based on dynamic service outsourcing specified in electronic contracts. Service enactment is performed by dynamically linking the workflow management infrastructures of the involved organizations. Extended service enactment support is provided in the form of cross-organizational transaction management and process control, advanced quality of service monitoring, and support for high-level flexibility in service enactment. CrossFlow technology is realized on top of a commercial workflow management platform and applied in two real-world scenarios in the contexts of a logistics and an insurance company

    Knowledge-Intensive Processes: Characteristics, Requirements and Analysis of Contemporary Approaches

    Get PDF
    Engineering of knowledge-intensive processes (KiPs) is far from being mastered, since they are genuinely knowledge- and data-centric, and require substantial flexibility, at both design- and run-time. In this work, starting from a scientific literature analysis in the area of KiPs and from three real-world domains and application scenarios, we provide a precise characterization of KiPs. Furthermore, we devise some general requirements related to KiPs management and execution. Such requirements contribute to the definition of an evaluation framework to assess current system support for KiPs. To this end, we present a critical analysis on a number of existing process-oriented approaches by discussing their efficacy against the requirements

    Adaptive Process Management in Cyber-Physical Domains

    Get PDF
    The increasing application of process-oriented approaches in new challenging cyber-physical domains beyond business computing (e.g., personalized healthcare, emergency management, factories of the future, home automation, etc.) has led to reconsider the level of flexibility and support required to manage complex processes in such domains. A cyber-physical domain is characterized by the presence of a cyber-physical system coordinating heterogeneous ICT components (PCs, smartphones, sensors, actuators) and involving real world entities (humans, machines, agents, robots, etc.) that perform complex tasks in the “physical” real world to achieve a common goal. The physical world, however, is not entirely predictable, and processes enacted in cyber-physical domains must be robust to unexpected conditions and adaptable to unanticipated exceptions. This demands a more flexible approach in process design and enactment, recognizing that in real-world environments it is not adequate to assume that all possible recovery activities can be predefined for dealing with the exceptions that can ensue. In this chapter, we tackle the above issue and we propose a general approach, a concrete framework and a process management system implementation, called SmartPM, for automatically adapting processes enacted in cyber-physical domains in case of unanticipated exceptions and exogenous events. The adaptation mechanism provided by SmartPM is based on declarative task specifications, execution monitoring for detecting failures and context changes at run-time, and automated planning techniques to self-repair the running process, without requiring to predefine any specific adaptation policy or exception handler at design-time
    • …
    corecore