89 research outputs found

    Multiple Shape Registration using Constrained Optimal Control

    Get PDF
    Lagrangian particle formulations of the large deformation diffeomorphic metric mapping algorithm (LDDMM) only allow for the study of a single shape. In this paper, we introduce and discuss both a theoretical and practical setting for the simultaneous study of multiple shapes that are either stitched to one another or slide along a submanifold. The method is described within the optimal control formalism, and optimality conditions are given, together with the equations that are needed to implement augmented Lagrangian methods. Experimental results are provided for stitched and sliding surfaces

    A relaxed approach for curve matching with elastic metrics

    Full text link
    In this paper we study a class of Riemannian metrics on the space of unparametrized curves and develop a method to compute geodesics with given boundary conditions. It extends previous works on this topic in several important ways. The model and resulting matching algorithm integrate within one common setting both the family of H2H^2-metrics with constant coefficients and scale-invariant H2H^2-metrics on both open and closed immersed curves. These families include as particular cases the class of first-order elastic metrics. An essential difference with prior approaches is the way that boundary constraints are dealt with. By leveraging varifold-based similarity metrics we propose a relaxed variational formulation for the matching problem that avoids the necessity of optimizing over the reparametrization group. Furthermore, we show that we can also quotient out finite-dimensional similarity groups such as translation, rotation and scaling groups. The different properties and advantages are illustrated through numerical examples in which we also provide a comparison with related diffeomorphic methods used in shape registration.Comment: 27 page

    Planar Curve Registration using Bayesian Inversion

    Full text link
    We study parameterisation-independent closed planar curve matching as a Bayesian inverse problem. The motion of the curve is modelled via a curve on the diffeomorphism group acting on the ambient space, leading to a large deformation diffeomorphic metric mapping (LDDMM) functional penalising the kinetic energy of the deformation. We solve Hamilton's equations for the curve matching problem using the Wu-Xu element [S. Wu, J. Xu, Nonconforming finite element spaces for 2mth2m^\text{th} order partial differential equations on Rn\mathbb{R}^n simplicial grids when m=n+1m=n+1, Mathematics of Computation 88 (316) (2019) 531-551] which provides mesh-independent Lipschitz constants for the forward motion of the curve, and solve the inverse problem for the momentum using Bayesian inversion. Since this element is not affine-equivalent we provide a pullback theory which expedites the implementation and efficiency of the forward map. We adopt ensemble Kalman inversion using a negative Sobolev norm mismatch penalty to measure the discrepancy between the target and the ensemble mean shape. We provide several numerical examples to validate the approach.Comment: 45 pages, 9 figure
    • …
    corecore